Oligomeric silsesquioxanes containing dye Rhodamine B in an organic shell
№6

Keywords

chromophore-containing oligomeric silsesquioxanes, POSS, functionalization, organic-inorganic nanocomposites, rhodamine dyes, lactonization.

How to Cite

Gumenna, M., Klimenko, N., Stryutsky, A., Shevchuk, A., & Kravchenko, V. (2019). Oligomeric silsesquioxanes containing dye Rhodamine B in an organic shell. Ukrainian Chemistry Journal, 85(1), 47-57. https://doi.org/10.33609/0041-6045.85.1.2019.47-57

Abstract

A method for the synthesis of amphiphilic reactive oligomeric silsesquioxanes (OSS) with fragments of Rhodamine B fluorescent dye and hydroxyl groups in organic shell (OSS-Rh) by the reaction between carboxyl groups of the dye and epoxy groups of the mixture of oligomeric silsesquioxanes (OSS-Ep) was developed. The structure of the synthesized substance was characterized by the methods of IR and 1H NMR spectroscopy.

The UV-spectrum of the OSS-Rh compound in dimethylformamide (DMF) solution was characterized by absorption bands of both the colored zwitterion (562 nm and 350 nm) and the colorless lactone (318 nm) forms of Rhodamine B. The absorption band at 562 nm in the spectrum of OSS-Rh in DMF solution was more intense than the analogous band in the spectrum of the original Rhodamine B. Therefore, the attachment of Rhodamine B to the silsesquioxane core of an oligomeric silsesquioxanes mixture does not have a significant effect on the position of the absorption maxima in UV-spectrum and prevents dye’s fragments from converting to the colorless lactone form.

In the fluorescence spectra of both Rhodamine B and OSS-Rh, obtained using ethyl alcohol as a solvent, a peak is observed at λmax = 570 nm (λex = 500 nm). In the fluorescence spectrum of OSS-Rh obtained in DMF, a fluorescence peak is observed at λmax = 586 nm (λex = 520 nm). Consequently, the replacement of ethanol by DMF is accompanied by a bathochromic shift of the fluorescence peak of OSS-Rh. In the fluorescence spectrum of Rhodamine B at the same conditions, the peak of fluorescence is absent because of transition of the dye to the lactone form. The compounds obtained can be used in formation of functional Langmuir-Blodgett films as well as in obtaining polymer nanocomposites by covalent bonding.

https://doi.org/10.33609/0041-6045.85.1.2019.47-57
№6

References

Tanaka K., Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 2012. 22: 1733.

Zhou H., Ye Q., Xu J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater. Chem. Front. 2017. 1: 212.

Zhou Zh., Lu Zh.-R. Dendritic nanoglobules with polyhedral oligomeric silsesquioxane core and their biomedical applications. Nanomedicine (London). 2014. 9 (15): 2387.

Li Z., Kong J., Wang F., He C. Polyhedral oligomeric silsesquioxanes (POSSs): an important building block for organic optoelectronic materials. J. Mater. Chem. C. 2017. 5 (22): 5283.

Tretyakov Yu.D., Goodilin E.A. Key trends in basik and application-oriented reserch on nanomaterials. Russ. Chem. Rev. 2009. 78 (9): 801.

Joshi M., Butola B.S. Polymeric nanocomposites – polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J. Macromol. Sci. C. 2004. 44 (4): 389.

Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 2003. 28 (1): 83.

Chi H., Mya K.Y., Lin T., He C., Wang F.K., Chin W.S. Thermally stable azobenzene dyes through hybridization with POSS. New J. Chem. 2013. 37: 735.

Olivero F., Carniato F., Bisio C., Marchese L. A novel stable and efficient light-emitting solid based on saponite and luminescent POSS. J. Mater. Chem. 2012. 22: 25254.

Lo M.Y., Zhen C., Lauters M., Jabbour G.E., Sellinger A. Organic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. J. Am. Chem. Soc. 2007. 129: 5808.

Yang X., Froehlich J.D., Chae H.S., Li S., Mochizuki A., Jabbour G.E. Efficient light-emitting devices based on phosphorescent polyhedral oligomeric silsesquioxane materials. Adv. Funct. Mater. 2009. 19: 2623.

Sellinger A., Tamaki R., Laine R.M., Ueno K., Tanabe H., Williams E., Jabbour G.E. Heck coupling of haloaromatics with octavinylsilsesquioxane: solution processable nanocomposites for application in electroluminescent devices. Chem. Commun. 2005. 3700.

Arap W., Pasqualini R., Montalti M., Petrizza L., Prodi L., Rampazzo E., Zaccheroni N., Marchio S. Luminescent silica nanoparticles for cancer diagnosis. Curr. Med. Chem. 2013. 20: 2195.

Froehlich J.D., Young R., Nakamura T., Ohmori Y., Li S., Mochizuki A., Lauters M., Jabbour G.E. Synthesis of multi-functional POSS emitters for OLED applications. Chem. Mater. 2007. 19: 4991.

Liras M., Pintado-Sierra, M.; Amat-Guerri, F.; Sastre, R. New BODIPY chromophores bound to polyhedral oligomeric silsesquioxanes (POSS) with improved thermo- and photostability. J. Mater. Chem. 2011. 21: 12803.

Gao Y., Xu W., Zhang X., Y. Fu, Zhu D., He Q., Cao H., Cheng J. Dual functional and multiple substituted fluorescent star-shaped POSS for a 1+1>2 explosive vapour detection. RSC Adv. 2016. 6 (56): 51403.

Yan Z.Q., Xu H.Y., Guang S.Y., Zhao X., Fan W.L., Liu X.Y. A convenient organicinorganic hybrid approach toward highly stable squaraine dyes with reduced H-aggregation. Adv. Funct. Mater. 2012. 22 (2): 345.

Spoljaric S., Shanks R.A. Novel elastomer dye-functionalised POSS nanocomposites: Enhanced colourimetric, thermomechanical and thermal properties. eXPRESS Polymer Letters. 2012. 6 (5): 354.

Sastre R., Martín V., Garrido L., Chiara J.L., Trastoy B., García O., Costela A., García-Moreno I. Dye-doped polyhedral oligomeric silsesquioxane (POSS)-modified polymeric matrices for highly efficient and photostable solid-state lasers. Adv. Funct. Mater. 2009. 19 (20): 3307.

Cordes D.B., Lickiss P.D., Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 2010. 110 (4): 2081.

Cho H., Hwang D., Lee J., Jung Y., Park J., Lee J., Lee S., Shim H. Electroluminescent polyhedral oligomeric silsesquioxane-based nanoparticle. Chem. Mater. 2006. 18: 3780.

Ke F., Wang S., Guang S., Liu Q., Xu H. Synthesis and properties of broad-band absorption POSS-based hybrids. Dyes and Pigments. 2015. 121: 199.

Olivero F., Renò F., Carniato F., Rizzi M., Cannas M., Marchese L. A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. Dalton Trans. 2012. 41: 7467.

Pérez-Ojeda M.E., Trastoy B., López-Arbeloa Í., Banuelos J., Costela Á., García-Moreno I., Chiara J.L. Click assembly of dye-functionalized octasilsesquioxanes for highly efficient and photostable photonic systems. Chem. Eur. J. 2011. 17: 13258.

Tutov M.V., Sergeev A.A., Zadorozhny P.A., Bratskaya S.Yu. Mironenko A.Yu. Dendrimeric rhodamine based fluorescent probe for selective detection of Au. Sens. Actuators. B. 2018. 273: 916.

Kunthom R., Piyanuch P., Wanichacheva N., Ervithayasuporn V. Cage-like silsesequioxanes bearing rhodamines as highly sensitive and selective fluorescence Hg2+ sensors. J. Photochem. Photobiol. A. 2017. 356: 248.

Matějka L., Dukh O., Brus J., Simonsick W.J., Meissner B. Cage-like structure formation during sol-gel polymerization of glycidyloxypropyltrimethoxysilane. J. Non-Cryst. Solids. 2000. 270 (1-3): 34.

Williams R.J.J., Erra-Balsells R., Ishikava Y., Nonami H., Mauri A.N., Riccardi C.C. UV-MALDI-TOF and ESI-TOF mass spectrometry characterization of silsesquioxanes obtained by the hydrolytic condensation of (3-glycidoxypropyl)-trimethoxysilane in an epoxidized solvent. Macromol. Chem. Phys. 2001. 202 (11): 2425.

Matějka L., Murias P., Pleštil J. Effect of POSS on thermomechanical properties of epoxy–POSS nanocomposites. Eur. Polym. J. 2012. 48: 260.

Wang Y., Tsai H., Ji Z., Chen W. Controlling POSS dispersion in epoxy in nanocomposite by introducing multi-epoxy POSS groups. J. Mater. Sci. 2007. 42: 7611.

Xiao F., Sun Y., Xiu Y., Wong C.P. Preparation, thermal and mechanical properties of POSS epoxy hybrid composites. J. Appl. Polym. Sci. 2007. 104 (4): 2113.

Beija M., Afonso C.A.M., Martinho J.M.G. Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009. 38 (8): 2410.

Yan X., Li J., Yang R., Li Y., Zhang X., Chen J. A new photoelectrochemical aptasensor for prion assay based on cyclodextrin and rhodamine B. Sens. Actuators. B. 2018. 255: 2187.

Helttunen K., Prus P., Luostarinen M., Nissinen M. Interaction of aminomethylated resorcinarenes with rhodamine B. New J. Chem. 2009. 33: 1148.

Rosenthal I, Peretz P., Muszkat K.A. Thermochromic and hyperchromic effects in rhodamine B solutions. J. Phys. Chem. 1979. 83 (3): 350.

Ledin P.A., Tkachenko I.M., Xu W., Choi I., Shevchenko V.V., Tsukruk V.V. Star-shaped molecules with polyhedral oligomeric silsesquioxane core and azobenzene dye arms. Langmuir. 2014. 30: 8856.

Gunawidjaja R., Huang F., Gumenna M., Klimenko N., Nunnery G.A., Shevchenko V., Tannenbaum R., Tsukruk V.V. Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir. 2009. 25 (2): 1196.