intermetallics, silicide, crystal structure, single-crystal X-ray diffraction.

How to Cite

Belan, B., Manyako, M., Dzevenko, M., Kowalska, D., & Gladyshevskii, R. (2020). CRYSTAL STRUCTURE OF THE NEW SILICIDE Lu3Ni11.74(2)Si4 . Ukrainian Chemistry Journal, 86(5), 3-12.


The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


1. Villars P., Cenzual K. (Eds.), Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds, Release 2017/18, ASM International, Materials Park (OH). 2017.
2. Villars P., Cenzual K., Gladyshevskii R., Handbook of Inorganic Substances 2017. Walter de Gruyter. Berlin. 2017.
3. Belan B., Tokaychuk Ya., Manyako M., Gladyshevskii R. New ternary phases in the Lu–Ni–Si system. Chem. Met. Alloys. 2013. 6 (3/4): 209.
4. Belan B., Manyako M., Pasinska K., Demchyna M., Gladyshevskii R. E. Crystal Structure of the Dy3Ni11.83Si3.98 Compound. Sol. State Phenomena. 2019. 289: 77.
5. Andrusyak R. I., Kotur B. Y., Sikiritsa M., Bodak O. I., Crystal structure of the germanide Sc3Ni11Ge4. Kristallografiya. 1988. 33: 599.
6. Sheldrick G. M. Crystal structure refinement with SHELXL, Acta Crystallogr. 2015. C 71: 3.
7. Emsley J. The Elements, 3-th edition. Ox-ford University Press. Oxford. 1998.
8. Lin Q., Miller G. J. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pro-nounced Electron Delocalization. Acc. Chem. Res. 2018. 51: 49.
9. Fang Yuan, Mozharivskyj Y., Morozkin A. V., Knotko A. V., Yapaskurt V. O., Pani M., Provino A., Manfrinetti P. The Dy–Ni–Si system as a representative of the rare earth–Ni–Si family: Its isothermal section and new rare-earth nickel silicides. J. Solid State Chem. 2014. 219: 247.
10. Morozkin A. V., Knotko A. V., Yapaskurt V. O., Manfrinetti P., Pani M., Provino A., Nirmala R., Quezado S., Malik S. K. The isothermal section of Gd–Ni–Si system at 1070 K. J. Solid State Chem. 2016. 235: 58.
11. Erassme J., Lueken H. Strontium and eu-ropium polynuclear units in intermetallic compounds with magnesium. Structural re-finements and relationships, Acta Crystallogr. B. 1987. 43: 244.
12. Fornasini M. L. Crystal structure of (Ho-, Er-, Tm-, Lu-, Y-)Zn5 and ThCd5 interme-tallic compounds, J. Less Com. Metals. 1971. 25: 329.
13. Klymentiyi N., Semuso N., Pukas S., Tokaychuk Ya., Akselrud L., Gladyshevskii R. Crystal structure of the ternary com-pound Sc3Cu7.5Al7.5. Chem. Met. Alloys. 2016. 9: 78.
14. Gladyshevskii R. E., Strusievicz O. R., Cenzual K., Parthé E. Structure of Gd3Ru4Al12, a new member of the EuMg5.2 structure family with minority-atom clusters. Acta Crystallogr. B. 1993. 49: 474.
15. Verbovytskyy Y., Gonçalves A. P. On the ternary RExMg1–xAl2 (RE = Gd – Tm), RE3Ag5±xMg11±x, REAg4+xMg2–x, RE4Ag10.3Mg12 and RE4Ag10+xMg3–x (RE = Ce – Nd, Sm) phases. Solid State Sci. 2015.
40: 84. sciences.2015.01.006
16. Kotur B. Y., Sikiritsa M., Bodak O. I., Gladyshevskii E. I. Crystal-structure of the Sc3Ni11Si4 compound. Kristallografiya. 1983. 28: 658.


Download data is not yet available.