REARRANGEMENT OF SUBSTITUTED 1,3-BENZOXAZINES INTO XANTHENE-TYPE COMPOUNDS
№5

Keywords

rearrangement, Vilsmeier–Haack reagent, condensation, 1,3-benzoxazine, xanthene derivatives.

How to Cite

Farat, O., Varenichenko, S., Zaliznaya, E., & Markov, V. (2020). REARRANGEMENT OF SUBSTITUTED 1,3-BENZOXAZINES INTO XANTHENE-TYPE COMPOUNDS. Ukrainian Chemistry Journal, 86(2), 111-122. https://doi.org/10.33609/0041-6045.86.2.2020.111-122

Abstract

The rearrangement patterns of new 1,3-benzoxazines derivatives obtained by condensation of substituted salicylamides with cyclic ketones under the influence of Vilsmeier-Haack reagent has been studied. The influence of angel strain in a 4-membered spirocycle prevents the rearrangement of spiro [1,3-benzoxazine-2,1'-cyclobutan]-4(3H)-one under the action of a formylating agent. 1,3-Benzoxazines derivatives with ring sizes from 5- to 8-membered under the action of a formylating agent have formed formylxanthene derivative. Their formation reaction rate depends on the presence of electronegativity substituents at positions C-6 and C-8 of the aromatic cycle, as well as in the spiroring. In this work, we presented an effective method for the synthesis of formyl derivatives of xanthenes based on readily available salicylamide. It was found that (spiro[1,3-benzoxazine-2,1'-cyclobutan]-4(3H)-one) does not rearrange even under prolonged heating due to the spirocycle strain. The presence of bromine or iodine atoms at positions C-6 and C-8 of the aromatic cycle of 1,3-benzoxazines makes the reaction more difficult, which requires more harsh synthesis conditions.

https://doi.org/10.33609/0041-6045.86.2.2020.111-122
№5

References

1. Markov V.I., Farat O.K., Varenichenko S.A., Velikaya E.V. Rearrangement of 5′,6′,7′,8′-tetrahydro-1′H-spiro(cyclohexane-1,2′-quinazolin)-4′(3′H)-
one during Vilsmeier reaction. Mendeleev Communication, 2012, 2: 101.

2. Varenichenko S. A., Farat O. K., Markov V. I. Reactivity of substituted 2-spiropyrimidin-4-ones under Vilsmeier-Haack conditions. Chemistry of Heterocyclic Compounds, 2015, 11: 1602.

3. Markov V.I., Farat O.K., Varenichenko S.A., Velikaya E.V., Zubatyuk R.I., Shishkin О.V. Synthesis and formylation of substituted 2-spiropyrimidin-4-ones and re-lated compounds. Chemistry of Heterocyclic Compounds, 2013, 49: 1158.

4. Farat O. K., Markov V. I., Varenichenko S. A., Dotsenko V. V., Mazepa A.V. The Vilsmeier-Haack formylation of 2,3-dihydro-4H-1,3-benzoxazin-4-ones and isomeric 1,2-dihydro-4H-3,1-benzoxazin-4-ones: an effective approach to functional-ized 2H-/4H-Chromenes and Tetrahydroacridines. Tetrahedron, 2015, 71: 5554.

5. Farat O. K., Ananyev I. V., Varenichenko S. A., Zaliznaya E.V., Markov V. I. A facile approach for the synthesis of novel xanthene derivatives with Vilsmeier-Haack reagent. Chemistry of Heterocyclic Compounds, 2019, 55 (1): 38.

6. Farat O.K., Ananyev I.V., Varenichenko S.A., Tatarets A.L., Markov V.I. Vilsmeier-Haack reagent: An efficient reagent for the transformation of substituted 1,3-naphthoxazines into xanthene-type dyes. Tetrahedron, 2019, 75 (19): 2832.

7. Farat O.K., Farat S.A., Ananyev I.V., Okovytyy S.I., Tatarets A.L., Markov V.I. Novel xanthene push-pull chromophores and luminophores: Synthesis and study of their spectral properties. Tetrahedron, 2017, 73: 7159.
8. Farat O.K., Farat S.A., Tatarets A.L., Mazepa A.V., Markov V.I. Synthesis and spectral properties of new xanthene chromophores. J. Mol. Struct., 2019, 1176: 567.

9. Varenichenko S.A., Farat O.K., A. V. Mazepa A.V., Markov V.I. Synthesis of new schiff bases based on formyl derivatives of xanthenes Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, 5: 22.

10. Zhao Y.-H., Li Y., Long Y., Zhou Z., Tang Z., Deng K., Zhang S. Highly selective fluorescence turn-on determination of fluoride ions via chromogenic aggregation of a silyloxy-functionalized salicylaldehyde azine. Tetrahedron Lett., 2017, 58: 1351.

11. Ziołek M., Filipczak K., Maciejewski A. Spectroscopic and photophysical properties of salicylaldehyde azine (SAA) as a photo-chromic Schiff base suitable for heteroge-neous studies. Chem. Phys. Lett. 2008, 464: 181.

12. Ankita R., Sudipto D., Shibashis H., Partha R. Development of a new chemosensor for Al3+ ion: Tuning of proper-ties. J. Lumin. 2017, 192: 504.

13. Zahorulko S.P., Varenichenko S.A., Farat O.K., Markova I.V., Markov V.I. Investigation of Antimicrobial Activity of 1,3-benzoxazine Derivatives. Biopolymers and Cell, 2019, 35 (5): 349.

14. Kondo K., Seki M., Kuroda T., Yama-naka T., Iwasaki T. 2-Substituted 2,3-dihydro-4H-1,3-benzoxazin-4-ones:  Novel auxiliaries for stereoselective synthesis of 1-β-methylcarbapenems J. Org. Chem. 1997, 62: 2877.

15. Jones G., Stanforth S. P. Vilsmeier-Haack reaction. Org. React. 2000, 56: 355.

16. Su W., Weng Y., Jiang L., Yang Y.,
Zhao L., Chen Z., Li Z., Li Recent progress in the use of Vilsmeier-type reagents. J. Org. Prep. Proced. Int. 2010, 42: 503.

17. Jones G., Stanforth S. P. Vilsmeier-Haack reaction Org. React. 1997, 49: 1.

18. Sahyun, M., Faust J. A. Derivatives of salicylamide. J. Am. Pharm. Assoc., 1956, 45 (8): 514.

19. Iwasaki Tameo, Kondo Kazuhiko, Ohmizu Hiroshi, DE, 0635488A2, 23.06.94.

Downloads

Download data is not yet available.