hybrid mesostructured silica films, spectral luminescent properties, Rhodamine 6G, Pluronic 123, nanoparticles, magnetite, a magnetic field.

How to Cite

Grebennikov, V., Leonenko , E., Manorik, P., Romanovska, N., Kobylinska, N., & Shulzhenko, O. (2020). THE INFLUENCE OF SUPERPARAMAGNETIC Fe3O4 NANOPARTICLES ON SPECTRAL AND LUMINESCENT PROPERTIES OF MESOSTRUCTURED SiO2/P123/Rh6G/Fe3O4 FILMS FORMED IN STATIONARY MAGNETIC FIELDS. Ukrainian Chemistry Journal, 86(2), 78-96.


The effect of superparamagnetic Fe3O4 nanoparticles (NPs) on the spectral luminescence properties of homogeneous optically transparent mesostructured silica films of SiO2/P123/Rh6G/Fe3O4, containing {P123 (Rh6G)} micelles consisting of Pluronic 123 with encapsulated Rh6G, and formed in stationary magnetic fields (MF) with an induction of less than 500 mT, was investigated. It was shown that, unlike SiO2/P123/Rh6G, the spectral and luminescent properties of SiO2/P123/Rh6G/Fe3O4 films depend on the MF used during their formation, and a gradual decrease in the band intensities in Rh6G spectra and quenching of luminescence with increasing of MF induction was observed. It is associated with a decrease in the monomer fraction and an increase in the fraction of non-luminescent Rh6G H-aggregates in micelles due to the interaction intensifying in the MF (formation of Fe3+ -O bonds) of superparamagnetic NPs with micelles {P123 (Rh6G)}, oriented in the MF, which leads to a gradual deformation of micelles and accumulation in them of H-aggregate. The dependences of the changes in the absorption bands intensity and fluorescence of the monomeric form of Rh6G in the spectra of the films on the changes in the magnetic induction of the MF are described by an exponential function, and the ratio of the fluorescence intensities of the SiO2/P123/Rh6G films to the fluorescence intensities of the SiO2/P123/Rh6G/Fe3O4 films linearly depends on the induction of MF, which they are able to "remember", which is manifested in the values of fluorescence intensities.


1. Telbiz G, Leonenko E, Goer D, Manoryk P. Optical manifold of spatial localization of dyes molecules self-organized in the body of silica thin films // Springer Proc Phys. - 2013.- 146.- P. 83–91.

2. De Queiroz T. B., Botelho M. B. S., De Boni L., [et al.] Strategies for reducing dye aggregation in luminescent host-guest systems: Rhodamine 6G incorporated in new mesoporous sol-gel hosts // J. Appl. Phys. - 2013 - 113, 113508.

3. Zhang M., Chen J., Gao J., Wang Z., Xu H., [et al.]. Magnetic-Field-Enabled Resolution Enhancement in Super-Resolution Imaging // Phys. Chem. Chem. Phys. 2015. - 17. - P. 6722-6727.

4. Zarezin A., Samusaev V., Alexandrov K. Investigation of the interaction of supermagnetic nanoparticles with molecules of Rhodamine 6G in polymeric matrix // Issues KLGTU. – 2011. - № 20. – P. 25-31.

5. Hernando A. and Gonzalez J.M. Soft and hard nanostructured magnetic materials // Springer. Hyperfine Interact. 2000. - V. 130. – Р. 221-240.

6. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media // IEEE Trans. Magn. - 1981, Mag-17, 2. P. 1247-1248.

7. Kharlamova M., Sapoletova N., Eliseev A., Lukashin A. Magnetic properties of γ-iron oxide nanoparticles in a mesoporous silica matrix // JETP Lett. – 2007. – 85 № 9. - P. 439-443.

8. Semko L., Kruchek O., Gorbyk P., Shevlyakov Yu. Influence of magnetic field on sensor characteristics of composite mate-rials on a basis of nanocrystalline nickel // Chem. Phys. Technol. Surface. – 2008. – 14. – P. 398-406.

9. Petrakovskya E., Isakova V., Bajkov

O.,Velikanov D. Superparamagnetism of magnetite particles in fullerite C60 powder // J. Tech. Phys. – 2005. – 75 №6. – P. 117-120.
10. Lyutoev A., Smirnov Yu. Modeling of mag-netic properties of iron oxide nanoparticles for purification systems // Abstracts of sci-entific and technical conference. – Ukhta. – 2012. – P. 232-237.
11. Egodawatte S., Datt A., Burns E., Larsen S. Chemical insight into the adsorption of chromium(III) on iron oxide/mesoporous silica nanocomposites // Langmuir. – 2015. – 31 № 27. – P. 7553-7562.
12. Scherrer P. Bestimmung der Grosse und Derinneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen // Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse. – 1918. - 26, № 1. – P. 98-100.
13. K. Nakamoto. Infrared spectra of inorganic and coordination compounds- New York -1966.
14. A. Bordbar, A. Rastegari, R. Amiri, E. Ranjbakhsh, M. Abbasi, A. Khosropour. Characterization of Modified Magnetite Nanoparticles for Albumin Immobilization Biotechnol. Res. International 2014, (ID 705068), 6 pages.
15. Bojarski P., Matczuk A., Bojarski C., Kawski A., Kukliński B., Zurkowska G., Diehl H. Fluorescent dimers of rhodamine 6G in concentrated ethylene glycol solution // Chem. Phys. – 1996.- 210.- P. 485-499.
16. Gavrilenko V. I., Noginov M. A. Ab initio study of optical properties of rhodamine 6G molecular dimers // J. Chem. Phys. - 2006. - 124. - 044301-6.
17. Leonenko E., Telbiz G., Bogoslovskaya A., Manoryk P. Effect of aggregation of Rhodamine 6G on the spectral and lumines-cence characteristics of hybrid mesostructured silica films // Theor. Exp. Chem. – 2015. - 50 № 6. - P. 358-363.
18. Lasio. B., Malfatti L., Innocenzi P. Photodegradation of rhodamine 6G dimers in silica sol–gel films / Journal of Photochemistry and Photobiology A: Chemistry -2013. -271. - P. 93–98.
19. Anedda A., Carbonaro C.M., Corpino R., Ricci P.C., Grandi S., Mustarelli P.C. Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses // J. Non-Cryst. Solids - 2007.- 353.- P. 481-485.
20. Innocenzi P., Kozuka H., Yoko T. Dimmer-to-monomer transformation of Rhodamine 6G In sol-gel silica films // J. Non-Cryst. Solid- 1996.- V. 201. -P. 26-36.
21. Nikiforov V., Ignatenko A., Irhin V. The influence of size and surface on the mag-netism of nanoparticles of magnetite and maghemite // JETP. – 2017. – 151 №2. – P. 356-363.
22. Kokorin A., Kulyako L., Degtyarv E., Kovarskii A., Patsaeva S., Dzhardimalieva G., Yurishcheva A., Kydralieva K. Struc-ture and properties of nanosized composites based on Fe3O4 and humic acids // R. J. Phys. Chem. B. – 2018. – 12 №1. – P. 172-178.
23. Y. Zhao, X. Chen, C. Yang, G. Zhang Mesoscopic Simulation on Phase Behavior of Pluronic P123 Aqueous Solution. J. Phys. Chem. B 2007, 111, 13937-13942.
24. T. Bala, R. Gunning, M. Venkatesan, J. Godsell, S. Roy, K. Ryan Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium Nanotechnol. -2009, 20, 415603, 11 pages.


Download data is not yet available.