electrodeposition, cobalt alloys, corrosion resistance, refractory metal.

How to Cite

Ved’, M., Sakhnenko, N., Nenastina, T., Yermolenko, I., Proskurina, V., & Volobuyev, M. (2019). CORROSION BEHAVIOR OF THE ELECTROLYTIC TERNARY COBALT ALLOYS WITH Mo(W) AND Zr IN ALKALINE SOLUTION . Ukrainian Chemistry Journal, 85(12), 96-109.


The ternary Co–Mo–W(Zr) coatings with total content of refractory metals of 30–40 wt.%, and Co–W–Zr alloys (12–26 wt.%) are deposited from pyrophosphate-citrate electrolytes in pulse regime. The composition of the coatings as well as the surface morphology depends on the current density. The X-ray diffraction patterns reflect the amorphous-and-crystalline ternary alloys structure. Phases of α-Co, Co–Mo intermetallic compounds, and traces of metallic molybdenum were detected in the Co–Mo–Zr coatings. Phase composition of Co–Mo–W deposits differs by emergence of Co7W6 phase and traces of metallic tungsten, and there is no metallic W in Co–W–Zr electrolytic alloys. The corrosion behavior of ternary coatings in alkaline medium studied by EIS shows that Co–Mo–Zr alloys are characterized by highest corrosion resistance among deposited coatings due to presence of metallic molybdenum and stoichiometric ZrO2 with both high electrical resistivity and chemical stability. The coatings  Co–Mo–W and Co–Mo–Zr containing phases of Mo or W are characterized by higher corrosion resistance as compared with that without metallic molybdenum and tungsten. The cyclic voltammetry data confirm stability of ternary coatings in alkaline solution under anodic polarization. Such properties as well as the developed globular surface make materials promising for use as anodes in fuel cells in particular based on alkali electrolytes.


1. Averkov I.S., Baykov A.V., Yanovskiy L.S., Volokhov V.M. Modeling of electrochemical processes in solid oxide fuel cells. Russ. Chem. Bull. 2017. 65: 2375.

2. Korovin N.V., Sedlov A.S., Slavnov Y.A., Burov V.D. Calculating the efficiency of a hybrid power station employing a high-temperature fuel cell. Therm. Eng. 2007. 54: 137.

3. Mench M.M. Fuel Cell Engines. (New Jersey: John Wiley and Sons Inc., 2008).

4. Liu L., Corma A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018. 118: 4981.
5. Greeley J., Nørskov J.K., Mavrikakis M. Electronic Structure and Catalysis On Metal Surfaces. Annu. Rev. Phys. Chem. 2002. 53: 319.

6. Tarasevich M.R., Bogdanovskaya V.A. In: Maiyalagan T, Saji VS (ed) Electrocatalysts for Low Temperature Fuel Cells: Funda-mentals and Recent Trends. (KGaA:Wiley-VCH Verlag GmbH & Co, 2017).

7. Ved M., Glushkova M., Sakhnenko N. Catalitic properties of binary and ternary alloys based on silver. Func. Mater. 2013. 20: 87.

8. Sakhnenko N.D., Ved M.V., Hapon Y.K., Nenastina T.A. Functional Coatings of Ternary Alloys of Cobalt with Refractory Metals. Russ. J. Appl. Chem. 2015. 88: 1941.

9. Yar-Mukhamedova G., Ved’ M., Sakhnenko N., Nenastina T. Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten. Appl. Surf. Sci. 2018. 445: 298.

10. Ved’ M.V., Koziar M.A., Sakhnenko N.D., Slavkova M.A. Functional properties of electrolytic alloys of Cobalt with Molybdenum and Zirconium. Func. Mater. 2016. 23(3): 420.

11. Yapontseva Y.S., Dikusar A.I., Kyblanovskii V.S. Study of the composition, corrosion, and catalytic properties of Co-W alloys electrodeposited from a citrate pyrophosphate electrolyte. Surf. Eng. Appl. Electrochem. 2014. 50: 330.

12. Wendlandt A.E., Stahl S.S. Quinone-Catalyzed Selective Oxidation of Organic Molecules. Angew. Chem. Int. Ed. Engl. 2015. 54:14638.

13. Zhang J., Shangguan L., Shuang S., Dong C. Electrocatalytic oxidation of formaldehyde and methanol on Ni(OH)2/Ni electrode. Russ. J. Electrochem. 2013. 49: 888.

14. Song C., Khanfar M., Pickup P. Mo oxide modified catalysts for direct methanol, formaldehyde and formic acid fuel cells. J. Appl. Electrochem. 2006. 36: 339.

15. Pirskyy Y., Murafa N., Korduban O., Šubrt J. Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co(III) and Ni(II). J. Appl. Electrochem. 2014. 44: 1193.

16. Mejía C.H., van Deelen T.W., de Jong K.P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nature Communications. 2018. 9: 4459.

17. Zeng J., Lee J.Y. Effects of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions. J. Power Sources. 2005. 140: 268.

18. Kharmachi I., Dhouibi L., Berçot P., Rezrazi M. Co-deposition of Ni-Co alloys on carbon steel and corrosion resistance. J. Mater. Environ. Sci. 2015. 6: 1801.

19. Yapontseva Y., Kublanovsky V., Maltseva T. Peculiarities of electrodeposition of Cobalt-Tungsten-Rhenium alloy. Ukrainian Chemistry Journal. 2019. 85: 80.

20. Arzumanova A., Starunov A., Shpanova K. Wear Resistance of a Composite Galvanic Coating Based on the Nickel-Cobalt Alloy. Materials Science Forum. 2019. 945: 735.

21. Garcia J., Lago D., Senna L. Electrodeposition of Cobalt Rich Zn-Co alloy Coatings from Citrate Bath. Materials Research. 2014. 17: 947.

22. Ved’ M.V., Sakhnenko N.D., Yermolenko I.Y., Nenastina T.A. Nanostructured Functional Coatings of Iron Family Metals with Refractory Elements. In: Fesenko O., Yatsenko L. (ed.) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. (Cham: Springer, 2018).

23. Ved’ M.V., Sakhnenko M.D., Bohoyavlens’ka O.V., Nenastina T.O. Modeling of the surface treatment of passive metals. Mater. Sci. 2008. 44: 79.

24. Yar-Mukhamedova G., Sakhnenko N., Ved’ M., Yermolenko I., Zyubanova S. Surface analysis of Fe-Co-Mo electrolytic coatings. IOP Conference Series: Materials Science and Engineering, 2017. 213.

25. Ved’ M.V., Sakhnenko M.D., Karakurkchi H.V., Ermolenko I.Yu., Fomina L.P. Functional Properties of Fe-Mo and Fe-Mo-W Galvanic Alloys. Mater. Sci. 2016. 51: 701.

26. Yermolenko I.Y., Ved’ M.V., Sakhnenko N.D., Sachanova Y.I. Composition, Morphology, and Topography of Galvanic Coatings Fe-Co-W and Fe-Co-Mo. Nanoscale Res. Lett. 2017. 12:352.

27. Thomas D., Rasheed Z., Jagan J.S., Kumar K.G. Study of kinetic parameters and development of a voltammetric sensor for the determination of butylated
hydroxyanisole (BHA) in oil samples. J. Food Sci. Technol. 2015. 52:6719.

28. Dutta G., Siddiqui Sh., Zeng H., Carlisle J., Arumugam P. The effect of electrode size and surface heterogeneity on electrochemical properties of ultrana-nocrystalline diamond microelectrode. J. Electroanal. Chem. 2015. 756: 61.

29. Cesiulis H., Tsyntsaru N., Ramanavicius A., Ragoisha G. In: Tiginyanu I. (ed.), NanoScience and Technology. (Springer Nature, Switzerland AG, 2016).

30. Casciano P.N.S., Ramon L. Benevides R.L., Santana R.A.C. Factorial design in the electrodeposition of Co-Mo coatings and their evaluations for hydrogen evolution reaction. J. Alloys Compd. 2016. 723: 164.

31. Kublanovsky V.S., Yapontseva Y.S. Electro-catalytic Properties of Co-Mo Alloys Electrodeposited from a Citrate-Pyro-phosphate Electrolyte. Electrocatal. 2014. 5: 372.

32. Ved M., Sakhnenko N., Bairachnaya T., Tkachenko N. Structure and properties of electrolytic cobalt-tungsten alloy coatings. Func. Mater. 2008. 15: 613.

33. Yermolenko I.Y., Ved’ M.V., Sakhnenko N.D., Fomina L.P., Shipkova I.G. Galvanic ternary Fe-Co-W coatings: structure, composition and magnetic properties. Func. Mater. 2018. 25: 274-281.

34. Yakushin R., Kuterbekov K., Grafov D., Kuterbekov K., Nurakhmetov T., Yakushin R. Improving the Efficiency and Safety of Operation of the Hydrogen Fuel Cell. Safety in Technosphere. 2015. 3: 40.

35. Chiu H.W., Chuang J.M., Lu C.C., Lin W.T., Lin C.W., Lin M.L. In situ measurement of tissue impedance using an inductive coupling interface circuit. IEEE Trans. Biomed. Circuits Syst. 2013. 7: 225.


Download data is not yet available.