AMINOMETHANSULFONIC AND ALKYLAMINOMETHANSULFONIC BUFFER SYSTEMS
№1

Keywords

aminomethanesulfonic acids, buffer solutions, buffer capacity, lipophilicity.

How to Cite

Khoma, R., Ennan, A., Chebotarev, A., & Vodzinskii, S. (2019). AMINOMETHANSULFONIC AND ALKYLAMINOMETHANSULFONIC BUFFER SYSTEMS. Ukrainian Chemistry Journal, 85(9), 3-16. https://doi.org/10.33609/0041-6045.85.9.2019.3-16

Abstract

The investigations of acid-base interactions in aminomethanesulfonic acid (AMSA)–potassium aminomethanesulfonate–water and alkylaminomethanesulfonic acid–potassium alkylaminomethane-sulfonate–water systems, where alkyl are methyl (MeAMSA), N-(2-hydroxyethyl) (HEAMSA), n-propyl (n-PrAMSA), n-butyl (n-BuAMSA), tert-butyl (t-BuAMSA), n-heptyl (n-HpAMSA) and benzyl (BzAMSA) were performed in temperature range 293–313 К. Buffer action pH limits were determined and the buffer capacity of these systems was estimated.
Based on the evaluation of buffer action pH limits of aminomethansulfonic acids, it has been found that with the help of n-PrAMSA and n-BuAMSA, it was possible to maintain the medium acidity in the range of physiological pH values throughout the range of investigated temperatures.
As the temperature rises, the pH of the lower buffer limit increases for AMSA and n-BuAMSA systems, while for HEAMSA, t-BuAMSA, n-HpA-MSA and BzAMSA decreases. The value of the pH of the upper buffer threshold for all tested systems decreases during their heating. With the increase of the electron-donor properties of the N-substituent in the AMSA–MeAMSA–HEAMSA–t-BuAMSA series, the value of their electronegativity decreases to result in lowering of the pH values of the lower buf-fering action limit of these systems. For the more lipophilic N-substituents (n-C4H9, n-C7H15 and C6H5CH2), this regularity is not typical.
It has been established that with increasing the CYAMSK/CYAMSA concentration ratio, the buffer capacity of YNHCH2SO3H–YNHCH2SO3K–H2O systems with hydrophilic aminomethansulfonic acids (Y = H, CH3 and HOCH2CH2) increases. For systems with lipophilic n-PrAMSA and t-BuAMSA, their buffer capacity doesn’t change at 0.4 ≤ QKOH/QYAMSA ≤ 1.0.
The obtained data on the buffer capacity of the investigated systems is recommended for use in chemical analysis, microbiological and biochemical studies.

https://doi.org/10.33609/0041-6045.85.9.2019.3-16
№1

References

Grygorenko O.O., Biitseva A.V., Zhersh S. Ami-no sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron. 2018. 74 (13): 1355. doi: 10.1016/j.tet.2018.01.033

Benoit R.L., Boulet D., Frechette M. Solvent ef-fect on the solution, ionization, and structure of aminosulfonic acid. Can. J. Chem. 1988. 66 (12): 3038. doi: 10.1139/v88-470

Yu Q., Kandegedara A., Xu Y., Rorabacher D.B. Avoiding Interferences from Good’s Buffers: A Contiguous Series of Noncomplexing Tertiary Amine Buffers Covering the Entire Range of pH 3–11. Analyt. Biochem. 1997. 253 (1): 50. doi: 10.1006/abio.1997.2349.

Ferreira C.M.H., Pinto I.S.S., Soares E.V., Soares H.M.V.M. (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Adv. 2015. 5 (39): 30989. doi: 10.1039/c4ra15453c.

Long R.D., Hilliard N.P., Chhatre S.A., Timo-feeva T.V., Yakovenko A.A., Dei D.K., Mensah E.A. Comparison of zwitterionic N-alkylami-nomethanesulfonic acids to related compounds in the Good buffer series. Beilstein J. Org. Chem. 2010. 6 (31). doi: 10.3762/bjoc.6.31.

Khoma R.E. Thermodynamics of the dissociation of aminomethanesulfonic acid and its N-sub-stituent derivatives at 293–313 K. Russ. J. Phys. Chem. 2017. 91 (1): 76. doi: 10.1134/S00360 24417010125.

Hrydina T.L., Khoma R.E., Ennan A.A.-A., Fedchuk A.S., Hruzevskyi O.A. Investigations of the antimicrobial activity of aminomethanesulfonic acids against strains of Staphylococcus aureus with different antimicrobial susceptibility. Za-porozhye Med. J. 2019. 21 (2): 234. [in Uk-rainian].

Khoma R.E., Ennan А.А., Gridina T.L., Fedchuk A.S., Lozitskiy V.P., Rakipov I.M., Vladika А.S. Synthesis, Antioxidant and Anti-Influenza Activi-ty of Aminomethanesulphonic Acids. Khimiko-Farmatsevticheskii Zhurn. 2019. 53 (5): 28. doi: 10.30906/0023-1134-2019-53-5-28-31. [in Russian].

Sodiq A., Rayer A.V., Olanrewaju A.A., Abu Zahra M.R. Reaction kinetics of carbon dioxide (CO2) absorption in sodium salts of taurine and proline using a stopped‐flow technique. Int. J. Chem. Kinet. 2014. 46: 730.

Energy Efficient Solvents for CO2 Capture by Gas–Liquid Absorption. Compounds, Blends and Advanced Solvent Systems. Ed. by Budzi-anowski W.M. (Springer, 2017). doi: 10.1007/ 978-3-319-47262-1.

Khoma R.E., Osadchiy L.T., Dlubovskiy R.M. Aminomethanesulphonic acids and its N-de-rivatives are components of N. Goods buffers. Visn. Odes. nac. univ. Him. 2015. 20 (3): 66. doi: 10.18524/2304-0947.2015.3(55).54005. [in Russian].

Khoma R.E., Chebotaryov A.N., Kalarash K.N., Osadchiy L.T. Conductivity of aminometha-nesulphonic acids N-derivatives aqueous solu-tions. Visn. Odes. nac. univ. Him. 2018. 23 (3): 16. doi: 10.18524/2304-0947.2018.3(67).140798. [in Russian].

Khoma R.E., Chebotaryov A.N., Osadchiy L.T., Vodzinskiy S.V., Toporov S.V. Acid-base proper-ties of aminomethanesulphonic acid N-n-pro-pyl, N-n-butyl and N-n-heptyl derivatives. Visn. Odes. nac. univ. Him. 2019. 24 (1): 122. doi:

18524/2304-0947.2019.1(69).158502. [in Russian].

Cameron T.S., Chute W.J., Knop O. Amino-sulfonic acids. Part 1. Crystal structures of N-me-thylaminomethanesulfonic acid, MeNHCH2S-O3H, and disodium N-methyliminobis(methane-sulfonate) dihydrate, MeN(CH2SO3Na)2∙2H2O. Canadian J. Chem. 1984. 62 (3): 540. doi: 10.1139/v84-090.

Khoma R.E., Shestaka A.A., Shishkin O.V., Baumer V.N., Brusilovskii Yu.E., Koroeva L.V., Ennan A.A., Gel’mbol’dt V.O. Features of inter-action in the sulfur(IV) oxide-hexamethylene-tetramine-water system: A first example of iden-tification of the product with a sulfur-carbon bond. Russ. J. Gen. Chem. 2011. 81 (3): 620. doi: 10.1134/S1070363211030352.

Khoma R.E., Gel’mbol’dt V.O., Shishkin O.V., Baumer V.N., Koroeva L.V. Synthesis, crystal structure, and spectral characteristics of N-(Hyd-roxyethyl)aminomethanesulfonic acid. Russ. J. Gen. Chem. 2013. 83 (5): 969. doi: 10.1134/ S1070363213050149.

Khoma R.E., Gel’mbol’dt V.O., Baumer V.N., Puzan A.N., Ennan A.A. Synthesis, crystal struc-ture, and spectral characteristics of N-(tert-butyl)aminomethanesulfonic acid. Russ. J. Gen. Chem. 2015. 85 (10): 2282. doi: 10.1134/S1070 363215100102.

Vereshchagin A.N. Inductive Effect. Constants of Substituents for Correlation Analysis. (Mos-cow: Science, 1988). [in Russian].

Asuero A. Buffer Capacity of a Polyprotic Acid: First Derivative of the Buffer Capacity and pKa Values of Single and Overlapping Equilibria. Critical Rev. Anal. Chem. 2007. 37 (4): 269. doi: 10.1080/10408340701266238.

Perrin D.D., Dempsey B. Buffers for pH and Metal Ion Control. (London: Springer, 1974).

Downloads

Download data is not yet available.