SYNTHESIS AND STUDY OF THE HETERONUCLEAR ACETYLACETONATE Nd(III) AND Ni(II) COMPLEX AS A PRECURSOR FOR OBTAINING COMPLEX-OXIDE STRUCTURES
№4

Keywords

complexes, neodymium, nickel, acetylacetone, synthesis, thermal analysis, IR spectra, X-ray powder diffraction, complex oxides

How to Cite

Zheleznova, L., Sliusarchuk, L., Ivakha, N., Kuleshov, S., & Trunova, O. (2019). SYNTHESIS AND STUDY OF THE HETERONUCLEAR ACETYLACETONATE Nd(III) AND Ni(II) COMPLEX AS A PRECURSOR FOR OBTAINING COMPLEX-OXIDE STRUCTURES. Ukrainian Chemistry Journal, 85(8), 83-93. https://doi.org/10.33609/0041-6045.85.8.2019.83-93

Abstract

The heterometallic acetylacetonate complex NdNi(АА)5·6Н2О has been synthesized to obtain nickel-neodymium-containing complex oxide materials. The properties of the complex have been investigated by physico-chemical methods of analysis (elemental analysis, differential thermal analysis, IR spectroscopy, X-ray powder diffraction).

The data of X-ray powder diffraction and IR spectroscopy of NdNi(АА)5·6Н2О confirmed the formation of a new heterometallic single-phase compound. In the IR spectrum of NdNi(АА)5·6Н2О, a change is observed in the amount and position of the bands in the region of stretching vibrations of the М-О, CС, CО bonds, as compared to the IR spectra of the monometallic complexes Ni(AA)2·2Н2О and Nd(AA)3·3Н2О.

An assessment of the thermal stability of the complex has been performed. It was shown that the synthesized heterometallic complex NdNi(АА)5·6Н2О is thermally more stable than monometallic acetylacetonates of Ni(II) and Nd(III). The heterocomplex can be used as a precursor to obtain heterometallic oxide structures. The pyrolysis of the NdNi(АА)5·6Н2О complex and, for comparison, the pyrolysis of the monocomplexes Ni(AA)2·2Н2О and Nd(AA)3·3Н2О were carried out with changing the thermolysis conditions — change of heating rate (from 5 °C/min to 20 °C/min), change of the final heating temperature (to 500 °C and to 800 °C), change of the exposure time at the final temperature (from 1 hour to 5 hours). It has been established that a change in the temperature conditions of the pyrolysis process affects the characteristics of the materials obtained (degree of amorphism, phase composition, the presence of impurities). The study of the composition of the pyrolysis products of the heterocomplex and the mixture of monometallic acetylacetonates of Ni(II) and Nd(III), obtained under heating to 800°C and holding at this temperature for 3 hours, showed the formation of a complex oxide Nd2NiO4, as well as other phases NiO, Nd6O11, Nd-Ni-O. However, their amount is noticeably smaller in the case of using a heterocomplex.

It is shown that the temperature of heat treatment of the heterometallic complex and the time of its pyrolysis are much less in comparison with solid-phase synthesis methods.

https://doi.org/10.33609/0041-6045.85.8.2019.83-93
№4

References

1. Trunov E.K., Zheleznova L.I., Gerasimchuk A.I., Berezhnitskaya A.S. Metal complexes of β-dike-tones as the basic components of nanocomposite systems. Ukr. Khim. Zhurn. 2015. 81 (11): 39. [in Russian].
2. Dobrokhotova J.V., Koroteeva P.S., Kirdyankin D.I., Kiskin M.A., Kovba M.L., Efimov N.N., Gavrikov A.V., Tyurin A.V., Novotortsev V.M. Ob-taining the lanthanide manganites LnMnO3 and LnMn2O5 from individual molecular precursors. Zhurn. Neorg. Khimii. 2015. 60 (12): 1567. [in Russian].
3. Malghe Y.S., Dharwadkar S.R. LaCrO3 Powder from lanthanum trisoxalatochromate (III) (LTCR) precursor. Microwave aided synthesis and thermal characterization. J. Therm. Anal. Calorim. 2008. 91: 915.
4. Malghe Y.S., Gurjar A.V., Dharwadkar S.R. LaCrO3 Synthesis of LaCoO3 from lanthanum trisoxalatocobaltate (III) (LTC) precursor employ-ing microwave heating technique. J. Therm. Anal. Calorim. 2004. 78: 739.
5. Gerasimchuk A.I., Mazurenko E.A., Panashenko V.M., Zheleznova L.I. The opening of the chelate cycle in β-diketonate ligands during the formation of polynuclear metal complexes and oligomers. Ukr. Khim. Zhurn. 2006. 72 (1–2): 77. [in Russian].
6. Gerasimchuk A.I., Zheleznova L.I., Mazurenko E.A. Prospects for the use of metal coordination com-pounds for the assembly of molecular aggregates. Ukr. Khim. Zhurn. 2006. 72 (10): 67. [in Russian].
7. Skopenko V.V., Amirkhanov V.M., Sliva T.Yu., Vasilchenko I.S., Anpilova E.L., Garnovskii A.D. Various types of metal complexes based on chelat-ing β-diketones and their structural analogues. Russ. Chem. Rev. 2004. 73 (8): 797.
8. Phillips II Theodore, Sands Donald E., Wagner Wil-liam F. The Crystal and Molecular Structure of Di-aquotris (acetylacetonato)lanthanum (III). Inorg. Chem. 1968. 7 (11): 2295.
9. Aslanov L.A, Porai-Koshits M.A, Dekaprylevich M.O. On the crystal structure of neodymium tris-acetylacetonate dihydrate. Zh. Struct. Khimii. 1971. 12 (3): 470. [in Russian].
10. Martynenko L.I., Burova S.A., Pisarevsky A.P. Ytterbium tris-acetylacetonate hydrates. Koord. Khimiya. 1995. 21 (5): 424. [in Russian].
11. Ilinsky A.L., Aslanov L.A., Ivanov V.I., Khalilov A.D., Petrukhin O.M. Molecular and crystal struc-ture of europium tris-acetylacetonate trihydrate. Zhurn. Struct. Khimii. 1969. 10 (2): 285. [in Rus-sian].
12. James A. Cunningham, Donald E. Sands, William F. Wagner. The Crystal & Molecular Structure of Yttrium Acetylacetonate Trihydrate. Inorg.Chem. 1967. 6 (3): 499.
13. Aslanov L.A., Korytny E.F., Poray-Koshits M.A. The structure of crystals of holmium tris-acetyl-acetonate trihydrate. Zhurn. Struct. Khimii. 1971. 12 (4): 661. [in Russian].
14. Kuzmina N.P., Rogachev A.Yu., Spiridonov F.M., Dedlovskaya Ye.M., Ketsko V.A., Glaze A., Battiston J. Heterobimetallic f-d complexes, deriv-atives of β-diketonates of rare-earth elements (III) and N, N'-ethylene-bis-salicylaldiminates of nickel (II) and copper (II). Zhurn. Neorgan. Khimii. 2000. 45 (9): 1468. [in Russian].
15. Orlova E.V., Goldberg A.E., Kiskin M.A., Korote-ev P.S., Emelina A.L., Bykov M.A., Aleksandrov G.G., Dobrokhotova J.V., Novotortsev V.M., Eremen-ko I.L. Binuclear heterometallic pivalate {M–Ln} complexes (M = Co, Ni, Cu; Ln = Sm, Gd): syn-thesis, structure, and thermal decomposition. Izv. Ac. of the Sc. (chem.) 2011. (11): 2195. [in Russian].
16. Samus N.M., Tsapkov V.I., Horoshun I.V., Petren-ko P.A., Gulya A.P. Heteronuclear copper, nickel or cobalt-containing salicylidenesemicarbazidates of rare-earth elements. Koord. Khimiya. 2000. 26 (4): 300. [in Russian].
17. Baydina I.A., Krisyuk V.V., Stabnikov P.A. The structure of heterocomplex compounds based on the plumbum (II) hexafluoroacetylacetonate and β-diketonates of copper (II). Zhurn. Structur. Khimii. 2006. 47 (6): 1123. [in Russian].
18. Baydina I.A., Krisyuk V.V., Peresypkina E.V., Stabnikov P.A. The structure and properties of he-terocomplexes based on the plumbum (II) hexa-fluoroacetylacetonate and copper trifluoroacetylace-tonate (II) Cu(tfa)2∙Pb(hfa)2. Zhurn. Structur. Khimii. 2008. 49 (2): 317. [in Russian].
19. Baydina I.A., Krisyuk V.V., Peresypkina E.V., Stabnikov P.A. The phenomenon of trans-cis iso-merization of copper (II) β-diketonate during co-crystallization with the plumbum (II) hexafluoro-acetylacetonate. Zhurn. Structur. Khimii. 2008. 49 (3): 507. [in Russian].
20. Kuzmina N.P., Kupriyanov G.N., Troyanov S.I. The study of the crystal structure and vacuum sub-limation product of the interaction of yttrium he-xafluoroacetylacetonate and copper acetylaceto-nate [Y(Hfa)3(H2O)2Cu(Acac)2]. Koord. Khimiya. 2000. 26 (5): 390. [in Russian].
21. Gurevich M.Z., Sas T.M., Lebedeva N.E., Ze-lentsov V.V., Stepin B.D. Thermal stability of ace-tylacetonates of some transition elements. Zhurn. Neorgan. Khimii. 1972. 17 (4): 1073. [in Russian].
22. Kuzmina N.P., Mironov A.V., Rogachev A.Yu. Structure and volatility of phenanthroline–β-di-ketonate complexes of rare earth elements. Ros. Khim. Zhurn. 2004. 48 (1): 15. [in Russian].
23. Garnovsky A.D., Urland I.E., Vasilchenko I.S., Uraev A.I., Burlov A.S., Bicherov A.V., Anpilo- va E.L., Korshunov O.Yu. Metal complexes of β-diketonate derivatives. Ros. Khim. Zhurn. 2004. 48 (1): 5. [in Russian].
24. Dzyubenko N.G., Martynenko L.I. Properties and structure of adducts of tris-acetylacetonate of rare-earth elements with о-phenantroline. Zhurn. Ne-organ. Khimii. 1986. 31 (7): 1699. [in Russian].
25. Khalmurzaev N.K., Muravieva I.A., Martynenko L.I., Spitsyn V.I., Berlyand A.S., Dzyubenko N.G., Stu-kelman E.D. Study of the structure of crystalline hyd-rates of rare-earth acetylacetonates by thermogra-vimetric and IR spectroscopic methods. Zhurn. Ne-organ. Khimii. 1975. 20 (7): 1752. [in Russian].
26 Nakamoto K. Infrared and Raman Spectra of In-organic and Coordination Compounds, fourth ed. (NY: John Wiley & Sons Inc., 1986)..
27. Gribov L.A., Zolotov Yu.A., Noskova M.N. Inves-tigation of the structure of acetylacetonates by in
frared spectroscopy. Zhurn. Structur. Khimii 1968. 9 (3): 448. [in Russian].
28. Singh M.K., Yang Y., Takoudis C.G. Synthesis of multifunctional multiferroic materials from metalo-rganics. Coord. Chem. Rev. 2009. 253 (23–24): 2920.
29. Zhang W., Ye H.-Y., Xiong R.-G. Metal-organic coordination compounds for potential ferroelec-trics. Coord. Chem. Rev. 2009. 253 (23–24): 2980.
30. Zakhvalinskii V.S., Laiho L., Lisunov K.G., Lah-deranta E., Petrenko P.A., Stepanov Yu.P., Stamov V.N., Shubnikov M.L., Khokhulin A.V. Variable-range hopping conduction in LaMnO3+δ. Phys. So-lid State. 2007. 49: 918.
31. Samantaray S., Mishra D.K., Pradham S.K., Mish-ra P., Sekhar B.R., Behera D., Rout P.P., Das S.K., Sahu D.R., Roul B.K. Correlation between structo-ral, electrical and magnetic properties of GdMnO3 bulk ceramics. J. Magn.Magn.Mater. 2013. 339: 168.

Downloads

Download data is not yet available.