FEATURES OF THE ACCUMULATION OF METAL IONS IN SLUDGES OF THE BIOENERGY COMPLEX
№4

Keywords

metal ions, bioenergy complex, sludge, fertilizers, lead, cadmium

How to Cite

Pershina, K., Gayday, O., Boichuk, O., & Rak, A. (2022). FEATURES OF THE ACCUMULATION OF METAL IONS IN SLUDGES OF THE BIOENERGY COMPLEX. Ukrainian Chemistry Journal, 88(10), 104-116. https://doi.org/10.33609/2708-129X.88.10.2022.104-116

Abstract

A study of the accumulation of metal ions in the sludge of the bioenergy complex after burning the plant's raw materials was carried out. The value of the content of toxic metals (cadmium, lead, and mercury) is less than an order of magnitude than the MPC for soils. The presence of a complex of trace elements, iron, calcium, magnesium, and sodium in sludge makes them attractive for use as raw materials for production of organic-mineral fertilizers for the cultivation of a sufficiently wide range of agricultural and ornamental crops. It was studied that distribution of heavy metals in sludge of the filtration fields in different depths : 1 – from the surface (1–5 cm), 2 – from the middle (~500 cm) and 3 – from a depth > 1500 cm. The distribution of metal's ions accumulation established that the maximum content of cadmium and nickel observed in the surface layer of silt, lead in the middle layer, and manganese in the deep (more than 1500 m) layer. Such distribution of heavy me­tals shows, that the maximum concentration of cadmium and lead takes place in the surface layer of silt, lead in the middle layer , and manganese in the deep (more than 1500 m) layer. Thus, the deep layer is the safest to use as a raw material in production of fertilizers. But the presence of cadmium and lead, which have cumulative properties, in all layers of sludge is a risk factor for using sludge as fertilizers for crops that will be used for food purposes but can be use for growing technical crops and ornamental plants. Also, the presence of aluminum and titanium in the composition of the sludge requires a more detailed study. The final decision is possible only after conducting field tests, with subsequent analytical control of products and soil after harvesting.

https://doi.org/10.33609/2708-129X.88.10.2022.104-116
№4

References

PashchenkaYa.V., Fatieieva A. I. Fonovyi vmist mikroelementiv u gruntakh Ukrainy. Za red. Kharkiv. 2003. 11.

Hang RT (1993).The Practical Handbook of Compost Engineering, Lewis, Boca Raton,Florida (1993).The Practical Handbook of Compost Engineering, Lewis, Boca Raton, Florida.

Shanks J.B., Gouin F.R. Compost value to ornamental plants. The Biocycle guide to composting Municipal Wastes. The J.G press Emmanus, P.A. 1989.120–121.

Spisok № 4 OBRD zabrudniuiuchykhrechovyn, zatverdzhenohonakazom MOZ Ukrainy vid 23.02.2000 р. № 30.

Pochvі. Termynі y opredelenyia: GOST 27593-88: 1988. [Chynnyi vid 1988-06-30]. М.: Standatartynform, 2006. 11.

Okhorona pryrody. Grunty. Klasyfikatsiia khi­michnykh rechovyn dlia kontroliu zabrudnen: GOST 17.4.1.02-83:1983. [Chynnyi vid 1985-01-01]. Yzdatelstvo standartov № 1984, YPK, 1984. 4.

Ekong E.B., Jaar B.G., Weaver V.M. Lead-related nephrotoxicity: A review of the epidemio­logic evidence. Kidney Int. 2006. 70: 2074–2084.

Goyer R.A. Lead Toxicity: Current Concerns. Environ. Health Persp. 1993. 100: 177–187.

Navas-Acien A., Guallar E., Silbergeld E.K., Rothenberg S.J. Lead exposure and cardiovascular disease: A systematic review. Environ. Health Perspect. 2007. 115: 472–482.

doi: 10.1289/ehp.9785.

Klaassen C.D., Liu J., Choudhuri S. Metallothionein: An intracellular protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. 1999. 39: 267–294.

doi: 10.1146/annurev.pharmtox.39.1.267.

Klaassen C.D., Liu J., Diwan B.A. Metallo­thionein protection of cadmium toxicity. Toxicol. Appl. Pharm. 2009. 238: 215–220.

doi: 10.1016/j.taap.2009.03.026.

Patrick L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 2003. 8: 106–128.

Chiou H.Y., Hsueh Y.M., Liaw K.F., Horng S.F., Chiang M.H., Pu Y.S., Lin J.S., Huang C.H., Chen C.J. Incidence of internal cancers and ingested inorganic arsenic: A seven-year follow-up study in Taiwan. Cancer Res. 1995. 55: 1296–1300.

Hartley W., Lepp N.W. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci. Total Environ. 2008. 390: 35–44.

doi: 10.1016/j.scitotenv.2007.09.021.

Rahman M.A., Rahman M.M., Reichman S.M., Lim R.P., Naidu R. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol. Environ. Saf. 2014. 100: 53–60.

doi: 10.1016/j.ecoenv.2013.11.024.

Gaetke L.M., Chow C.K. Copper toxicity, oxi­dative stress, and antioxidant nutrients. Toxicology. 2003. 189: 147–163.

doi: 10.1016/S0300-483X(03)00159-8.

Harmanescu M., Alda L.M., Bordean D.M., Gogoasa L., Gergen L. Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area, a case study: Banat County, Romania. Chem. Cent. J. 2011. 5: 64–73.

doi: 10.1186/1752-153X-5-64.

Alexander P.D., Alloway B.J., Dourado A.M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut. 2006. 144: 736–745.

doi: 10.1016/j.envpol.2006.03.001.

Zhu F., Fan W., Wang X., Qu L., Yao S. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Food Chem. Toxicol. 2011. 49: 3081–3085.

doi: 10.1016/j.fct.2011.09.019.

Hu J., Wu F., Wu S., Cao Z., Lin X., Wong M.H. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere. 2013. 91: 455–461.

doi: 10.1016/j.chemosphere.2012.11.066.

Yang Y., Zhang F.S., Li H.F., Jiang R.F. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J. Environ. Manag. 2009. 90: 1117–1122. doi: 10.1016/j.jenvman.2008.05.004.

Furdychko O.I., Slavov V.P., &Voitsytskyi A.P. Normuvannia antropohennoho navantazhennia na navkolyshnie pryrodne seredovyshche. K.: Osnova. 2008. 360.

Аtanassov I. New Bulgarian soil pollution standards. Bulg. J. Agric. Sci. 2008. 14: 68–75.

ZhovynskyiE.Ia., Kuraieva I.V. Ekoloho-­heo­khimichni doslidzhennia obiektiv dovkillia Uk­rainy. K: Alfa-reklama. 2012. 156.

FAO F. World fertilizer trends and outlook to 2018. Food and Agriculture Organization of the United Nations. Reporte. 2015.

Akbar H., Sedzro D.M., Khan M., Bellah S.F., &Billah S.S. Structure, function and applications of a classic enzyme: Horseradish peroxidase. J. Chem. Environ. Biol. Eng. 2018. 2: 52–59.

Guidi, G. Relationships between organic matter of sewage sludge and physico-chemical properties of soil. In Characterization, Treatment and Use of Sewage Sludge Springer, Dordrecht. 1981. 530–544.

Malysh N. Vazhkimetaly u hruntakh: stattia. Visnyk NAU. 2009. 67–71.

Cieślik M.B., Namieśnik J., Konieczka P. Review of sewage sludge management: stan­dards, regulations and analytical methods. J. Clean. Prod. 2015. 90: 1–15.

Downloads

Download data is not yet available.