ELECTRICAL CONDUCTIVITY AND SORPTION PROPERTIES OF THE COMPOSITES BASED ON ION EXCHANGE POLYMERS
№3

Keywords

separation of ions, organic-inorganic ion exchange materials, porous structure of polymers, electrical conductivity, diffusion coefficients.

How to Cite

Maltseva, T., Kolomiets, E., & Dzyazko, Y. (2019). ELECTRICAL CONDUCTIVITY AND SORPTION PROPERTIES OF THE COMPOSITES BASED ON ION EXCHANGE POLYMERS. Ukrainian Chemistry Journal, 85(4), 81-97. https://doi.org/10.33609/0041-6045.85.4.2019.81-97

Abstract

The review is devoted to the conditions for the creation and functional properties of organіс-inorganic ion-exchange materials, which in the form of sorbents and membranes can be applied in the processes of ion separation, as well as the purification of water and combined solutions of technological origin. The structure of air dry and hydrated organic ion-exchange polymers, conditions for the creation of organiс-inorganic ion-exchange materials, as well as their components, interaction of components and the corresponding classification are considered. Dry ion-exchange materials contain heterogeneities of different sizes, which are formed during the synthesis of polymer, with the smallest heterogeneities represent clusters, and the larger ones are related to crystallinity. The structure of hydrated ion- exchange materials adequately describes the cluster channel model of Hsu and Girke. The number of charged particles transferred corresponds to the contribution

of clusters and channels (volume fractions) to total porosity. The size of the clusters and channels can be determined by the method of small-angle X-ray scattering. The complex porous structure of ion-exchange polymers makes it possible to form inorganic particles in the one’s pores. The introduction of inorganic ion exchangers into the polymer leads to the appearance of additional osmotically active centers (fixed ions and antimony modifiers) that influence the compression pressure of composites. Regarding the functional properties of organiс-inorganic materials, data on the influence of the form and size of the nanoparticles of the inorganic component on the electrical conductivity of composites, examples of the use of organiс-inorganic sorbents in ion-exchange columns, and also effective diffusion coefficients corresponding to the exchange of two-charge metal cations (Zn2+, Pb2+, Cu2+, Ca2+, Ni2+) on H+ organic-inorganic sorbents, for the most part, organic resin- Dowex HCR-S with incorporated particles of zirconium hydrophosphate, are presented. The prospect of application of such materials in ion-exchange and membrane processes of separation and purification of aqueous solutions, as well as in the processes of efficient selective extraction of target ions, is shown.

https://doi.org/10.33609/0041-6045.85.4.2019.81-97
№3

References

Yeager H. L., Eisenberg A. Perfluorinated Ionomer Membranes. ACS Symposium Series. No. 180. Washington: American Chemical Society. 1982: 1.

Hsu W.Y., Gierke T.D. Ion transport and clustering in Nafion per-fluorinated membranes. J. Membr. Sci. 1983. 13 (3): 307.

Kononenko N.A., Fomenko M.A., Volfkovich Y.M. Structure of per-fluorinated membranes investigated by method of standard contact porosimetry. Adv.Colloid. Interface Sci. 2015. 222: 425.

Eisenberg A. Clustering of ions in organic polymers. A theoretical approach. Macromolecules. 1970. 3 (2): 147.

Weiss R.A., Macknight W.Y., Lundberg R.D. Structure and application of ion containing polymers.ACS Symposium Series. N 302. Washington: American Chemical Society. 1986: 2.

Dreifus B. Clustering and hydration in ionomers. Coulombic Interactions in Macromolecular Systems, ACS Symposium Series. 302: 103, ISBN 13: 9780841209602.

Fujimura M., Hashimoto T., Kawai H. Small angleX-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules. 1983. 14: 1309.

James P.J., Elliott J.A., McMaster T.J., Newton J.M., Elliot A.M.S., Hanna S., Miles M.J. Hydration of Nafion studied by AFM and X-rays cattering. Part I. J. Mater. Sci. 2000. 35 (20): 5111.

James P.J., Elliott J.A., McMaster T.J., Newton J.M., Elliot A.M.S., Hanna S., Miles M.J. Hydration of Nafion studied by AFM and X-ray scattering. Part II. J. Mater. Sci. 2000. 35 (20): 5120.

Young S.K., Trevino S.F., Beck Tan N.C. Small-Angle Neutron Scattering Investigation of Structural Changes in Nafion Membranes Induced by Swelling with Various Solvents. J. Polym. Sci., Part B: Polym. Phys. 2002. 40 (4): 387.

Dzyazko Yu.S., Ponomareva L.N., Volfkovich Y.M., Sosenkin V.E., Belyakov V.N. Conducting properties of a gel ionite modied with zirconium hydrophosphate nanoparticles. Russ. J. Electrochem.2013. 49 (3): 209.

Dobrevsky J., Zvezdov A. Investigation of pore structure of ion exchange membranes. Desalination.1979. 28 (3): 283.

Kun K.A., Kunin R. The pore structure of macroreticular ion exchange resins. J. Polym. Sci.: Polym. Symp. 1967. 16 (3): 1457.

Kononenko N., Nikonenko V., Grande D., Larchet C., Dammak L., Fomenko M., Volfkovich Yu. Porous structure of ion exchange membranes investigated by various techniques. Adv. Colloid. Interface Sci. 2017. 246: 196.

Jia K., Pan B., Lv L., Zhang Q.,Wang X., Pan B., Zhang W. Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. J. Colloid Interface Sci. 2009. 331 (2): 453.

Zhang Q.R., Du W., Pan B.C., Pan B.J., Zhan W.M., Zhan Q.J, Xu Z.W, Zhang Q.X. A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. J. Hazardous Mater. 2008. 152: 469.

Eikerling M., Kornyshev A. A., Stimming U.J. Electrophysical properties of polymer electrolyte membranes: a random network model. J. Phys.Chem. B. 1997. 101 (50): 10807.

Verbrugge M.W., Hill R.F. Ion and solvent transport in ion-exchange membranes I. A Macrohomogeneous Mathematical Model. J. Electrochem. Soc. 1990. 137 (3): 886.

Wescott J.T. Mesoscale simulation of morphology in hydrated per-fluorosulfonic acid membranes. J. Chem. Phys. 2006. 124 (13): 134702.

Mauritz K.A., Moore R.B. State of Understanding of Nafion. Chem. Rev. 2004. 104 (10): 4535.

Schmidt-Rohr K., Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mat. 2008. 7: 75.

Kononenko N.A., Berezina N.P., Vol’fkovich Yu.M., Shkol’nikov E.I., Blinov I.A. Investigation of ion-exchange materials structure by standard porosimetry method. J. Appl. Chem. USSR. 1985.58 (10): 2029.

Berezina N.P., Kononenko N.A., Vol’fkovich Yu.M. Hydrophilic properties of heterogeneous ion-exchange membranes. Russ. J. Electrochem.1994. 30 (3): 329.

Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P., Characterization of ion-exchange membrane materials: properties vs structure. Adv. Colloid. Interface Sci. 2008. 139: 3.

Yaroslavtsev A.B., Nikonenko V.V., Zabolotsky V.I. Ion transfer in ion-exchange and membrane materials. Russ. Chem. Rev. 2003. 72 (5): 393.

Yaroslavtsev A.B., Nikonenko V.V. Ion-exchange membrane materials: properties, modification, and practical application. Nanotech. in Russia.2009. 4 (3-4): 137.

Nikonenko V.V., Yaroslavtsev A.B., Pourcelly G. Ion transfer through charged membranes: structure, properties, and theory. Ionic interactions in natural and synthetic nacromolecules. Ciferri A., Perico A. (eds.). (New Jersey: Wiley, Hoboken, 2012). P. 267. ISBN: 9781118165850.

Volfkovich Y.M. Influence of the electric double layer on the internal interfaces in an ion-exchanger on its electrochemical and sorption properties.

Soviet Electrochem. 1984. 20 (5): 621.

Helfferich F. Ion exchange, second ed. (New York: Dover Publications, 1995). ISBN-10: 0486687848.

Mark J.E. Physical Properties of Polymers Handbook, second ed. (New York: Springer-Verlag, 2007). ISBN 978-0-387-69002-5.

Kimoto K. Water absorption and Donnan equilibria of per-fluoroionomer membranes for the chlor-alkali process. Electrochem. Sci. Tech.1983. 130 (2): 334.

Flory P.J., Rehner J.J. Statistical mechanics of cross-linked polymer networks. II. Swelling. J.Chem. Phys. 1943. 11 (11): 521.

Pushpa K.K., Nandan D., Iyer R.M. Thermodynamics of water sorption by perfluorosulphonate (Nafion-117) and polystyrene–divinylbenzene sulphonate (Dowex 50W) ion-exchange resins at 298 1 K. J. Chem. Soc., Faraday Trans. 1988. 1(84): 2047.

Nussinovitch A. Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. (New York, Dordrecht, Heidelberg, London: Springer, 2010). ISBN 978-1-4419-6617-9.

Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity. (London: Academic Press, 1991).

Harland C.E. Ion exchange – theory and practice, second ed. (Cambrige UK: Royal Society of Chemistry Publisher, 1994). ISBN: 0-85186-484-8.

Brun M., Quinson J.-F., Blanc R., NegreM., Spitz R., Barth M. Caracterisation texturale de resins en milieu reactionnel. Macromol. Chem. and Physics. 1981. 182 (3): 873.

Rouquerol J., Baron G., Denoyel R., Giesche H., Groen J., Klobes P., Levitz P., Neimark A.V., Rigby S., Skudas R., Sing K., Thommes M., Unger K. Liquid intrusion and alternative methods for the characterization of macroporous materials. Pure Appl. Chem. 2011. 84 (2): 107.

Volfkovich Yu.M., Bagotsky V.S. Experimental methods for investigations of porous materials and powders. In: Structural properties of different materials and powders used in different fields of science and technology. (London, Heidelberg, New York, Dordrecht: Springer, 2014). P. 1. ISBN: 978-1-4471-6376-3.

Volfkovich Yu.M., Sosenkin V.E. Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. 2012. 81 (10): 936.

Volfkovich Yu.M., Sakars A.V., Volinsky A.A. Application of the standard porosimetry method for nanomaterials. Int. J. Nanotech. 2005. 2 (3): 292.

Tripathi B.P., Shahi V.K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progr. in Polymer Sci.2011. 36 (7): 945.

Sanchez C., Julian B., Belleville P., Popall M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005. 15 (35–36): 3559.

Rezakazem M., Sadrzadeh M., Mohammadi T., Matsuura T. Methods for the preparation of organic– inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Organic-inorganic composite polymer electrolyte membranes. Inamuddin M.A., Asiri A.M. (eds.). (Switzerland: Springer, 2017). P. 311. ISBN 978-3-319-52739-0.

Jones D.J., Roziere J. Fuel cell technology and applications. In Handbook of fuel cells: fundamentals, technology, and applications. Vielstich W., Gasteiger H.A., Lamm A. (eds.). Vol. 3. (Wiley; Chicheter, 2003). P. 447. ISBN: 978-0-471-

-8.

Yu.-K., X.-P. An Imprinted Organic-Inorganic Hybrid Sorbent for Selective Separation of Cadmium from Aqueous Solution. ACS Publ., Anal. Chem. 2004. 76 (2): 453.

Dzyazko Yu.S., Ponomaryova L.N., Volfkovich Yu.M., Trachevskii V.V., Palchik A.V. Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Micropor. Mesopor. Mater. 2014. 198: 55.

Rathore B.S., Sharma G., Pathania D., Gupta V.K. Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite.

Carbohydr. Polymers. 2014. 103:221.

Akhavan B., Jarvis K., Majewski P. Plasma Polymer-Functionalized Silica Particles for Heavy Metals Removal. ACS Appl. Mater. Interfaces.2015. 7 (7): 4265.

Sahu A.K., Bhat S.D., Pitchumani S., Sridhar P., Vimalan V., George C., Chandrakumar N., Shuk- la A.K. Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs. J. Membr. Sci. 2009. 345 (1–2): 305.

Taherian R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Composites Sci. Technol. 2016. 123: 17.

Casciola M., Alberti G., Ciarletta A., Cruccolini A., Piaggio P., Pica M. Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity. Solid State Ionics. 2005. 176 (39–40): 2985.

Tong X., Zhang B., Fan Y., Chen Y. Mechanism exploration of ion transport in nanocomposite cation exchange membranes. Appl. Mater. Interfaces. 2017. 9 (15): 13491.

.Khan A.A., Alam M.M., Inamuddin, Mohammad F. Electrical conductivity and ion-exchange kinetic studies of a crystalline type ‘organic–inorganic’ cation-exchange material: polypyrrole/polyantimonic acid composite system, (Sb2O5)

(–C4H2NH–).nH2O. J. Electroanalyt. Chem. 2004. 572 (1): 67.

Sahu A.K., Bhat S.D., Pitchumani S., Sridhar P., Vimalan V., George C., Chandrakumar N.,Shukla A.K. Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs. J. Membr. Sci. 2009. 345 (1–2): 305.

Khan A.A., Paquiza L. Electrical behavior of conducting polymer based ‘polymeric–inorganic’ nanocomposite: Polyaniline and polypyrrole zirconium

titanium phosphate. Synth. Metals. 2011.161 (9–10): 899.

Kuznetsova E.V., Safronova E.Yu., Ivanov V.K., Yurkov G.Yu., Mikheev A.G., Golubenko D.V., Yaroslavtsev A.B. Transport properties of hybrid

materials based on MF-4SC perfluorinated ion exchange membranes and nanosized ceria. Nanotechn. in Russia. 2013. 8 (7–8): 461.

Muriithi B., Loy D.A. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stober Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification. Membranes. 2016. 6 (1): 12.

Won J.-H., Lee H.-J., Lim J.-M., Kim J.-H., HongY.T., Lee S.-Y. Anomalous behavior of proton transport and dimensional stability of sulfonated poly(arylene ether sulfone) nonwoven/silicate composite proton exchange membrane with dual phase co-continuous morphology. J. Membr. Sci. 2014. 450: 235.

Ossiander T., Heinzl C., Gleich S., Schцnberger F., Vцlk P., Welsch M., Scheu C. Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymerelectrolyte membrane. J.

Membr. Sci. 2014. 454: 12.

Xu T., Hou W., Shen X., Wu H., Li X., Wang J., Jiang Zh. Sulfonated titania submicrospheres doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability. J. Power

Sour. 2011. 196 (11): 4934.

Feng Sh., Shang Yu., Liu G., Dong W., Xie X., Xu J., Mathur V.K. Novel modification method to prepare crosslinked sulfonated poly(ether etherketone)/silica hybrid membranes for fuel cells. J.Power Sour. 2010. 195 (19): 6450.

He Y., Fu Yu., Geng L., Zhao Y., Lь Ch. A facile route to enhance the properties of polymer electrolyte- based organic–inorganic hybrid proton exchange

membranes. Sol. St. Ionics. 2015. 283: 1.

Dzyazko Yu.S., Ponomareva L.N., Volfkovich Yu.M., Sosenkin V.E. Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russ. J. Phys.Chem. 2012. 86 (6): 913.

Dzyazko Yu.S., Trachevskii V.V., Rozhdestvenskaya L.M., Vasilyuk S.L., Belyakov V.N. Interaction of adsorbed Ni(II) ions with amorphous zirconium hydrogen phosphate. Russ. J. Phys. Chem. 2013. 87 (5): 840.

Dzyazko Yu.S., Ponomaryova L.N., Volfkovich Yu.M., Sosenkin V.E., Belyakov V.N. Polymer ion-exchangers modified with zirconium hydrophosphate for removal of Cd2+ ions from diluted solutions. Separ. Sci. Technol. 2013. 48 (14): 2140.

Al-Othman Z.A., Alam M.M., NaushadM. Heavy toxic metal ion exchange kinetics: Validation of ion exchange process on composite cation exchanger nylon 6,6 Zr(IV) phosphate. J. Ind.Eng. Chem. 2013. 19 (3): 956.

Dzyazko Yu.S., Perlova O.V., Perlova N.A., Volfkovich Yu.M., Sosenkin V.E., Trachevskii V.V.,Sazonova V.F., Palchik A.V. Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U (VI)

cations. Desalination and Water Treatment. 2017. 69: 142.

Perlova N., Dzyazko Y., Perlova O., Palchik A., Sazonova V. Formation of Zirconium Hydrophosphate Nanoparticles and Their Effect on Sorption of Uranyl Cations. Nanoscale Research Letters. 2017. 12: 209.

Perlova O., Dzyazko Yu., Halutska I., Perlova N., Palchik A. Anion exchange resin modified with nanoparticles of hydrated zirconium dioxide for sorption of soluble U(VI) compounds. Springer Proceedings in Physics. 2018. 210: 3.

Ye. Kolomiyets, V. Belyakov, A. Palchik, T. Maltseva. Effect of incorpotration of hydrfted oxides of Sn(IV), Zr(IV), and Fe(III) in a matrix of the anion exchanger Dowex SBR-P on the sorption capacity towards the of arsenic (V) anion. Int. J. Water and Wastewater Treatment.-2016. 2 (2): 1.

Mal’tseva T.V., Kolomiets E.A., Vasilyuk S.L. Hybrid adsorbents based on hydrated oxides of Zr(IV), Ti(IV), Sn(IV), and Fe(III) for arsenic removal. Journal Water Chemistry and Technology. 2017. 39 (4): 386.

Kolomiyets Ye.O., Belyakov V.N., Palchik A.V., Maltseva T.V., Zheleznova L.I. Adsorption of arsenic by hybrid anion–exchanger based on titanium oxyhydrate. Journal Water Chemistry and Technology. 2017. 39 (2): 148.

Maltseva T.V., Kolomiets E.O., Dzyazko Yu.S., Scherbakov S. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals. Applied Nanoscience. 2018. https://doi.org/10.1007/s13204-018-0689-9

Ponomarova L., Dzyazko Yu., Volfkovich Yu., Sosenkin V., Scherbakov S. Effect of Incorporated Inorganic Nanoparticles on Porous Structure and Functional Properties of Strongly and Weakly Acidic Ion Exchangers. Springer Proceedings

in Physics. 2018. 214: 63.

Dzyazko Y.S., Ponomaryova L.N., Rozhdestvenskaya L.M., Vasilyuk S.L., Belyakov V.N. Electrodeionization of low-concentrated multicomponent Ni2+-containing solutions using organic-inorganic ion-exchangers. Desalination. 2014.

: 52.

Dzyazko Yu.S., Volfkovich Y.M., Ponomaryova L.N., Sosenkin V.E., Trachevskii V.V., Belyakov V.N. Composite ion-exchangers based on flexible

resin containing zirconium hydrophosphate for electromembrane separation. J. Nanosci. Technol. 2016. 2 (1): 43.

Dzyazko Yu., Kolomyets E., Borysenko Yu., Chmlenko V., Fedina I. Organic-inorganic sorbents containing hydrated zirconium dioxide for removal of chromate anions from diluted solutions. Materials Today: Proceedings. 2019. 6 (2): 260.

Downloads

Download data is not yet available.