THE IMPREGNATED FIBROUS CHEMISORBENTS FOR COLORIMETRIC DETECTION OF THE SULFUR DIOXIDE
№3

Keywords

colorimetry, fibrous chemisorbents, sulfur dioxide, acid-base indicators.

How to Cite

Khoma, R., Ennan, A., Bienkovska, T., Dlubovskii, R., Vodzinskii, S., & Mykhailova, T. (2022). THE IMPREGNATED FIBROUS CHEMISORBENTS FOR COLORIMETRIC DETECTION OF THE SULFUR DIOXIDE. Ukrainian Chemistry Journal, 88(1), 35-48. https://doi.org/10.33609/2708-129X.88.01.2022.35-48

Abstract

The paper presents the research results on the colorimetric behavior of impregnated fibrous chemisorbents (IFCS-I) of acid gases with visual identification of the dynamic absorption capacity “response” moment during the absorption of sulfur dioxide. Chemisorbents were obtained by impregnation of fibrous carriers by N-containing organic bases aqueous solutions with adding acid-base indicators (Ind). IFCS-I based on hexamethylenetetramine (IFCS-HMTA-I) and polyethylenepolyamine (IFCS-PEPA-I), as well as IFCS-MEA-EDTA-I based on monoethanolamine (MEA) and the disodium salt of ethylenediaminetetraacetic acid (EDTA) were used. The change specificity of colorimetric functions of indicator impregnated fibrous chemisorbents during their absorption of SO2 is revealed. IFCS-I original samples color significantly depends not only on the structure of Ind, but also the nature of amines (MEA, HMTA and PEPA), which are part of them. The color of the “response” samples of IFCS-MEA-EDTA-I, IFCS-PEPA-I and IFCS-HMTA-I, differ from the same properties of Bronsted acids aqueous solutions. The color change of azo-indicators occurs due to redox reactions with sulfite compounds. PEPA molecules and their ammonium cations in the composition of IFCS-I stabilize azo-indicators to these redox transformations.

https://doi.org/10.33609/2708-129X.88.01.2022.35-48
№3

References

Kats B.M., Olontsev V.F., Vihlancev A.V. А.В., Artushin G.A., Lazarev M.Yu., Dlubovskii R.M., Barinova N.V. Ion-exchange filtering gas mask with visual indication of the degree of depletion of the gas absorber. Occupational hygiene and occupational diseases. 1983, (7): 55–56 (in Russian).

Kats B.M., Dlubovskii R.M., Shevchenko V.N. Gas sensors indicating filters. Sensor Electro­nics and Microsystem Technologies. 2006, (3): 89–94 (in Russian).

Kosandrovich E.G., Soldatov V.S., Shachen­kova L.N. Indicator materials based on fibrous ion exchangers for visualizing of the sorption resource of the chemical air cleaning filters. Proc. National Acad. Sci. Belarus. Chem. Ser. 2020, 56 (2): 143–149 (in Russian).

doi: 10.29235/1561-8331-2020-56-2-143-149

Ennan A.A.-A., Khoma R.E., Dlubovskii R.M., Abramova N.M., Naumchak V.A. Composition for impregnating filter material. Patent UA94660, IPC В01D 39/00, no u201405985, 25.11.2014 (in Ukrainian).

Ennan A.A.-A., Khoma R.E., Dlubovskii R.M., Abramova N.M., Berezovska T.I. Composition for impregnating filter material. Patent UA 100677, IPC В01D 39/00, no u201413733, 10.08.2015 (in Ukrainian).

Ennan A.A.-A., Khoma R.E., Dlubovskii R.M., Abramova N.M., Berezovska T.I. Composition for impregnating filter material. Patent UA 112848, IPC В01D 39/00, no a201305812, 10.11.2016. (in Ukrainian).

Ivanov V.M., Kuznetsova O.V. Chemical chromaticity: potential of the method, application areas and future prospects. Russ. Chem. Rev. 2001, 70(5): 357–372.

doi: 10.1070/RC2001v070n05ABEH000636

Dolomatov M.Yu., Jarmuhametova G.U., Do­lo­matova L.A. The interaction of color and physic-chemical properties of hydrocarbon systems in colorimetric systems RGB and XYZ. Applied Physics. 2008, (4): 43–48 (in Russian).

Monogarova O.V., Oskolok K.V., Apyari V.V. Colorimetry in chemical analysis. J. Analyt. Chem. 2018, 73(11): 1076–1084. doi: 10.1038/166623a0

Chebotaryov A.N., Snigur D.V., Bevziuk K.V., Efimova I.S. The trends analysis of chemical chromaticity method evolution (review). Methods Objects Chem. Anal. 2014; 9(1): 4-11. doi: 10.17721/moca. 2014, 4–11 (in Russian).

Chernousova O.V., Rudakov O.B. Digital ima­ges in analytical chemistry for quantitative and qualitative analysis. Chemistry, physics and mechanics of materials. 2019; (2): 55–125 (in Russian).

Pimenov S.D., Sizov A.I., Mzokov G.V., Stro­i-televa A.D. Method for determining the white­ness of cellulosic materials using a scanner. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2020. N 232: 169–180 (in Russian).

Ennan A.A.-A., Khoma R.E., Dlubovskii R.M., Abramova N.M. The method of impregnation of the filter material. Patent UA147596, IPC В01D 39/00, no u20200634. 27.05.2021 (in Ukrainian).

Ennan A.А., Dlubovskiy R.M., Abramova N.N., Khoma R.E. Chemisorption of Sulfur Dioxide by Polyethylenepolyamine Impregnated Fibrous Materials. 2. The Study of Water Vapor Influence on Preadsorbtion SO2 Chemisorption by Fibrous Materials. Vіsn. Odes. nac. unіv., Hіm. 2014, 19(3): 20 (in Russian)

doi: 10.18524/2304-0947.2014.3(51).40356.

Processing of JPEG photos online. Available at https://www.imgonline.com.ua

Schults E.V., Monogarova O.V., Oskolok K.V. Digital colorimetry: analytical possibilities and prospects of use. Moscow Univ. Chem. Bull. 2019, 74(2): 55–62 (in Russian).

Ennan A.A.-A., Dlubovskii R.M., Khoma R.E. Water role in the gases chemosorporation processes by sorption-active materials. Vіsn. Odes. nac. unіv., Hіm. 2021, 26(3): 6–28 (in Ukrainian). doi: 10.18524/2304 0947.2021.3 (79).240717

Ennan A.A.-A., Khoma R.E., Dlubovskiy R.M., Zakharenko Y.S., Abramova N.N., Mikhaylova T.V., Barbalat D. O. Effect of Modifying Additives on Chemosorption of Sulfur (IV) Oxide by Fibrous Material Impregnated with Polyethylenepolyamine. Vіsn. Odes. nac. unіv., Hіm. 2020, 25(4): 56–73 (in Russian).

doi: 10.18524/2304-0947.2020.4(76).216927

Sabnis R. W. Handbook of acid-base indicators. Boca Raton: CRC Press, 2008. 416.

Zevackiy U.E., Samoylov D.V., Ruzanov D.О. Assessment of application field of photoemissive method for determination of pKa values for organic compounds. Bull. Saint Petersburg State Inst. Technol. 2010, (9): 54–59 (in Russian).

Snigur D.V. The use of tristimulus colorimetry functions in the study of the acid-base equilibria in solutions of organic compounds. Thesis of Ph.D dissertation, 25.00.02. Uzhgorod, 2017. 140 (in Ukrainian).

Naseem K., Farooqi Z.H., Begum R., Irfan A. Removal of congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J Clean Prod. 2018, 187: 296–307. doi: 10.1016/j.jclepro.2018.03.209.

Aragoni M.C., Arca M., Crisponi G., Nurchi V.M., Silvagni R. Characterization of the ionization and spectral properties of sulfonephthalein indicators. Correlation with substituent effects and structural features. Part II. Talanta. 1995; 42(8): 1157–1163. doi: 10.1016/0039-9140(95)01559-t

Shokrollahi A., Gohari M., Ebrahimi F. Determination of Acidity Constants of p-Rosolic acid and Bromoxylenol Blue by Solution Scanometric Method. Analyt. Bionalyt. Chem. Res. 2018; 5(1): 67-79. doi: 10.22036/ABCR.2017.89026.1153

Liu W., Hu W., Liu J. Study on the photoreductive decolorization of azo dyes by sulfite aqua. AIP Conf. Proc. 2017. 1794(1): 050006-1 – 050006-8.

doi: 10.1063/1.4971952

Khoma R.E., Shestaka A.A., Shishkin O.V., Baumer V.N., Brusilovskii Yu.E., Koroeva L.V., Ennan A.A., Gel’mbol’dt V.O. Features of interaction in the sulfur(IV) oxide-hexamethylenetetramine-water system: A first example of identification of the product with a sulfur-carbon bond. Russ. J. Gen. Chem. 2011. 81(3): 620. doi: 10.1134/S1070363211030352

Downloads

Download data is not yet available.