THE SYNTHESIS IMPACT ON DIELECTRIC PROPERTIES OF La0.5Li0.5-xNaxTiO3
№2

Keywords

solid solution, lithium-sodium-lanthanum titanate, perovskite, complex impedance, colossal permittivity.

How to Cite

Plutenko, T., V’yunov, O., Fedorchuk, O., Yanchevskii, O., & Belous, A. (2021). THE SYNTHESIS IMPACT ON DIELECTRIC PROPERTIES OF La0.5Li0.5-xNaxTiO3. Ukrainian Chemistry Journal, 87(5), 15-24. https://doi.org/10.33609/2708-129X.87.05.2021.15-24

Abstract

Using X-ray powder, diffraction the sequence of reactions occurring during the synthesis La0.5Li0.5-xNaxTiO3 by solid-state reaction technique has been determined. Using electron microscopy it has been shown that the grain size decreases with increasing x in La0.5Li0.5-xNaxTiO3 system. The influence of the grain size of ceramics on the dielectric characteristics has been indicated. The frequency dependences of permittivity and dielectric loss tangent have been investigated by ac impedance spectroscopy. It has been established that ceramic sample of La0.5Li0.4Na0.1TiO3 solid solution has the largest value of permittivity ɛ > 104 at wide frequency range (1–104 Hz) in La0.5Li0.5-xNaxTiO3 system.

https://doi.org/10.33609/2708-129X.87.05.2021.15-24
№2

References

Yu K., Tian Y., Gu R., Jin L., Ma R., Sun H., Xu Y., Xu Z., Wei X. Ionic conduction, colossal permittivity and dielectric relaxation behavior of solid electrolyte Li3xLa2/3−xTiO3 ceramics. Journal of the European Ceramic Society. 2018. 38 (13): 4483–4487. https://doi.org/10.1016/j.jeurceramsoc.2018.05.023.

Song F., Yamamoto T., Yabutsuka T., Yao T., Takai S. Synthesis and Characterization of LAGP-Based Lithium Ion-Conductive Composites with an LLTO Additive. Journal of Alloys and Compounds. 2021. 853: 157089. https://doi.org/10.1016/j.jallcom.2020. 157089.

Thangadurai V., Narayanan S., Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews. 2014. 43: 4714–4727. https://doi.org/10.1039/C4CS00020J.

Zhang H., Hao S., Lin J. Influence of Li2O-B2O3 glass on ionic migration and interfacial properties of La2/3−xLi3xTiO3 solid electrolyte. Journal of Alloys and Compounds. 2017. 704: 109–116. https://doi.org/10.1016/j.jallcom. 2017.02.059.

Adachi G., Imanaka N., Aono H. Fast Li+ Conducting Ceramic Electrolytes. Advanced Materials. 1996. 8: 127–135. https://doi.org/ 10.1002/adma.19960080205.

Inaguma Y., Liquan C., Itoh M., Naka­mura T., Uchida T., Ikuta H., Wakihara M. High ionic conductivity in lithium lanthanum titanate. Solid State Communications. 1993. 86 (10): 689–693. https://doi.org/10.1016/0038-1098(93)90841-A.

García-Martín S., Morata-Orrantia A., Agu­irre M. H., Alario-Franco M. Á. Giant barrier layer capacitance effects in the lithium ion conducting material La0.67Li0.25Ti0.75Al0.25O3. Applied Physics Letters. 2005. 86: 043110. http://dx.doi.org/10.1063/1.1852717.

Peng Zh., Wang J., Liang P., Zhu J., Zhou X., Chao X., Yang Z. A new perovskite-related ceramic with colossal permittivity and low dielectric loss. Journal of the European Ceramic Society. 2020. 40 (12): 4010–4015. https://doi.org/10.1016/j.jeurceramsoc.2020. 04.030.

Nakamura T., Sun P.-H., Shan Y. J., Inagu­ma Y., Itoh M., Kim I.-S. On the perovskite-related materials of high dielectric permittivity with small temperature dependence and low dielectric loss. Ferroelectrics. 1997. 196 (1): 205–209. https://doi.org/10.1080/00150199708224163.

Belous A.G., Ovchar O.V. Temperature compensated microwave dielectrics based on lithium containing titanates. Journal of the European Ceramic Society. 2003. 23 (14): 2525–2528. https://doi.org/10.1016/S0955-2219(03)00185-7.

Sanz J., Rivera A., León C., Santa­maría J., Várez A., V’yunov O., Belous A.G. Li mo­bility in (Li,Na)yLa0.66-y/3TiO3 perovskites (0.09https://doi.org/10.1557/PROC-756-EE2.3.

Sanjuan M. L., Laguna M. A., Belous A. G., V’yunov O. I. On the local structure and lithium dynamics of La0.5(Li,Na)0.5TiO3 ionic conductors. A Raman study. Chem. Mater. 2005. 17: 5862–5866. https://doi.org/10.1021/cm0517770.

Herrero C. P., Varez A., Rivera A., Santa­marıa J., Leon C., V’yunov O., Belous A. G., Sanz J. Influence of vacancy ordering on the percolative behavior of (Li1-xNax)3yLa2/3-y

TiO3 perovskites. J. Phys. Chem. B. 2005. 109: 3262–3268. https://doi.org/10.1021/jp046076p.

Kambale K., Mahajan A., Butee S.P. Effect of grain size on the properties of ceramics. Metal Powder Report. 2019. 74 (3): 689–693. http://dx.doi.org/10.1016/j.mprp.2019.04.060.

German R.M. Sintering trajectories: descrip­tion on how density, surface area, and grain size change. The Minerals, Metals & Materials Society. 2016. 68: 878–884. https://doi.org/10.1007/s11837-015-1795-8.

Subbarao E.C. Grain size effects in ad­vanced ceramics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998. 133 (1–2): 3–11. https://doi.org/10.1016/S0927-7757(97)00104-0.

Downloads

Download data is not yet available.