MEMBRANES FUNCTIONALIZED WITH 1d, 2d and 3d CARBON MATERIALS
№1

Keywords

membranes, nanomaterials, carbon nanotubes, fullene, graphene.

How to Cite

Rozhdestvenska, L., Kudelko, K., Kolomiiets, Y., Dzyazko , Y., & Ogenko, V. (2021). MEMBRANES FUNCTIONALIZED WITH 1d, 2d and 3d CARBON MATERIALS. Ukrainian Chemistry Journal, 87(4), 79-110. https://doi.org/10.33609/2708-129X.87.04.2021.79-110

Abstract

Modification of polymer and ceramic mem­branes by modern one-, two- and three- di­men­sional carbon nanomaterials (carbon nano­tubes, fullerenes and their derivatives, oxi­dized and reduced graphene) is consi­dered. It is shown that carbon materials can be incorporated into membrane matrices both as independent components and as a part of multicomponent modifier. The main methods of modification are the addition of modifiers to the polymer solution with subsequent making of polymer membranes, incorporation of nanoparticles of carbon nanomaterials into the pristine membranes, deposition on the outer membrane surface, formation of nanoparticles directly in the pores of the ceramic matrix. Composite membranes containing carbon nanoparticles are used for pervaporation, gas separation, baromembrane processes and low-temperature fuel cells. The addition of carbon nanomaterials to polymers provides better mechanical strength of the membranes. Hydrophilic carbon modifiers increase the resistance of membranes to fouling by organic substan­ces and biofouling, improves their separation ability. Ion-exchange membranes modified with fullerenol and oxidized graphene maintain high proton conductivity at elevated temperatures and low humidity. Сarbon additives increase membrane productivity in baromembrane processes. This effect is especially evident for materials modified with nanotubes: their smooth surface ensures fast liquid transport. These carbon nanomaterials are characterized by antibacterial activity. Composites consisting of nanotubes and an ion-exchange biopolymer, and composites with oxidized graphene and inorganic ion exchanger, give to membranes selectivity to inorganic ions. Ceramic membranes modified with carbon nanoparticles that were formed in the pores of matrices by carbonization of synthetic polymers and polysaccharides have the same properties.

Besides, these composites reject organic dyes too. The separating ability of composite membranes ocuures due to both dimensional and charge effects. Carbon or composite nano­particles block the pores of the membranes. The pores formed by the modifier prevent pene­tration of large particles of organic substances, for example, protein macromolecules. The charge effect is realized due to the functional groups of the modifier. For membranes modified with fullerenols, the retaining of low molecular weight organic substances occurs due to adsorption. Fullerene-modified gas sepa­ration and pervaporation membranes show increased permeability and selectivity.

https://doi.org/10.33609/2708-129X.87.04.2021.79-110
№1

References

https://www.marketsandmarkets.com/Market-Reports/membranes-market-1176.html

Strathmann H. Membrane separation processes: current relevance and future opportunities. AIChE J. 2001. 47 (4):1077.

Souza V., Quadri M. Organic-inorganic hybrid membranes in separation processes: a 10-year review. Braz J Chem Eng. 2013. 30 (4) : 683.

Subasi Y., Cicek B. Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part II. Membr Technol. 2017. 11: 5.

Sun W., Shi https://pubs.rsc.org/ko/content/articlehtml/2018/ra/c7ra12835e#fn1J., Chen C. et al. A review on organic–inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Adv. 2018. 8: 10040.

Myronchuk V., Dzyazko Y., Zmievskii Y. et al. Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica. 2016. 47:153.

Zmievskii Y., Rozhdestvenska L., Dzyazko Y. et al. Organic-inorganic materials for baromembrane separation. Springer Proc Phys. 2017. 195: 675.

Dzyazko Y., Rozhdestvenskaya L., Zmi­ev­skii Y. et al. Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res Let. 2015. 10: 64.

Abdulkarem E., Naddeo Y., Banat F. et al. Development of Polyethersulfone/α-Zirconium phosphate (PES/α-ZrP) flat-sheet nanocomposite ultrafiltration membranes. Chem Eng Res Design. 2020. 161: 206.

Huang J., Arthanareeswaran G., Zhang K. Effect of silver loaded sodium zirconium phosphate (nanoAgZ) nanoparticles incorporation on PES membrane performance. Desalination. 2012. 285: 100.

Zmievskii Yu., Dzyazko Yu., Myronchuk V. et al Fouling of polymer and organic-inorganic membranes during filtration of corn distillery. Ukrainian Food Journal. 2016. 5 (4): 739.

Pang R., Li X., Li J. et al. Preparation and characterization of ZrO2/PES hybrid ultra­filtration membrane with uniform ZrO2 nano­particles. Desalination. 2014. 332 (1): 60.

Yogarathinam L., Gangasalam A., Isma­il A. et al. Concentration of whey protein from cheese whey effluent using ultrafiltration by combination of hydrophilic metal oxides and hydrophobic polymer. J Chem Technol Biotechnol. 2018. 93 (9): 2576.

Torbati S., Shahmirzadi M., Tavangar T. Fabrication, characterization, and performance evaluation of polyethersulfone/TiO2 nanocomposite ultrafiltration membranes for produced water treatment. Polym Adv Technol. 2018. 10: 2619.

Behboud A, Jafarzadeh Y, Yegani R. Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes. Chem Eng Res Design. 2016. 114: 96.

Díez B., Roldán N., Martín A. et al. Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes. J Membr Sci. 2017. 526: 252.

Chen J., Ruan H., Wu L. et al. Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pre-treatment. Chem Eng J. 2011. 168 (3): 1272.

Li X., Janke A., Formanek P. et al. High per­meation and antifouling polysulfone ultrafiltration membranes with in situ synthesized silica nanoparticles. Mater Today Proc. 2020. 22100784.

Rahimi Z., Zinatizadeh A., Zinadini S. Mem­brane bioreactors troubleshooting through the preparation of a high antifouling PVDF ultrafiltration mixed-matrix membrane blended with O-carboxymethyl chitosan-Fe3O4 nanoparticles. Environ Technol. 2018. 40 (26 ): 3523.

Rahimi Z., Zinatizadeh A., Zinadini S. Preparation and characterization of a high antibiofouling ultrafiltration PES membrane using OCMCS-Fe3O4 for application in MBR treating wastewater. J Appl. Res. Water Wastewater. 2014. 1: 13.

Pavlugo T.M. Classification systems of mamomaterials. Naukovi notatky. 2013. 41(1): 191.

Sterescu D., Stamatialis D., Mendes E. et al. Fullerene-Modified Poly(2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: why binding is better than dispersing. Macromolecules. 2006. 39: 9234.

Harun-Or M., Ralph S. Carbon nanotube membranes: synthesis, properties, and future filtration applications. Nanomaterials. 2017. 7: 99.

Safarpour M., Khataee A., Vatanpour V. Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced Graphene Oxide/Titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. Ind Eng Chem Res. 2014. 53 (34): 13370.

Kang S., Herzberg M., Rodrigues D. et al. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir. 2008. 24: 6409.

Maleki Dizaj S., Mennati, A., Jafari S., Khezri K., Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Advanced pharmaceutical bulletin. 2015. 5 (1): 19.

Rubel R., Ali M., Jafor M. et al Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Materials Science. 2019. 6 (5): 756.

Miao M. Electrical conductivity of pure carbon nanotube yarns. Carbon. 2011. 49 (12): 3755.

Yu W., Liu Y., Shen L. et al Magnetic field assisted preparation of PES-Ni@MWCNTs membrane with enhanced permeability and antifouling performance. Chemosphere. 2020. 243: 125446.

Van Oss C.J., Good R.J., Chaudhury M.K. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci. 1986. 111: 378.

Khoerunnisa E., Rahmaha W., Ooic B.S. et al Chitosan/PEG/MWCNT/Iodine composite membrane with enhanced antibacterial properties for dye wastewater treatment.

J Environ Chem Eng. 2020. 8: 103686.

Gumbi N.N., Li J., Mamba B.B. et al Relating the performance of sulfonated thin-film composite nanofiltration membranes to structural properties of macrovoid-free polyethersulfone/ sulfonated polysulfone/ O-MWCNT supports. Desalination. 2020. 474: 114176.

Guo J., Zhu X., Dan Dong D. et al.The Hybrid process of preozonation and CNTs modification on hollow fiber membrane for fouling control. J Water Proc Eng.2019. 31: 100832.

Khalid A., Abdel-Karim A., Atieh M.A. et al PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Separ Purif Technol. 2017. 190: 165.

Rahimpoura A., Jahanshahi M., Khalili S. et al. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination. 2012. 286: 99.

Alawada A.R., Alshahrani A.A., Aouak T.A. et al. Polysulfone membranes with CNTs/Chitosan biopolymer nanocomposite as selective layer for remarkable heavy metal ions rejection capacity. Chem Eng J. 2020. 388: 124267.

Shah P., Murthy C.N. Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci. 2013. 437: 90.

Shawky H.A., Chae S.-R., Lin S. et al Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination. 2011. 272: 46.

Song X., Wang L., Tang C.Y. et al. Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation perfor­mance and antifouling capability in forward os­mosis process. Desalination. 2015. 369: 1.

Sun H., Li D., Liu B. et al. Enhancing the permeability of TFC membranes based on incorporating polyamide matrix into MWCNTs framework. Appl Surf Sci. 2019. 496: 143680.

Hammond G, Kuck V. Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters. (Washington: ACS, 1992.) ISBN 0-8412-2182-0.

Hirsch A.The Chemistry of the Fullerenes. [Weinheim, Germany: Wiley-VCH Verlag GmbH, 1994.] ISBN: 978-3-527-30820-0.

Bottero J., Rose J., Wiesner M. Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manage. 2006. 2 (4): 391.

Yevlampieva N, Vinogradova L, Ryumtsev E. Effect of fullerene C60 as a branching point on molecular and polarization properties of star-shaped polystyrenes. Polym Sci. 2006. 48: 106.

Shota S., Hidetoshi M., Keiichiro S. et al Polyelectrolyte membranes based on hydrocarbon polymer containing fullerene. J Power Sources. 2008. 176 (1): 16.

Penkova A., Acquah S., Piotrovskiy L. et alFullerene derivatives as nano-additives in polymer composites. Russ Chem Rev. 2017. 86 (6): 530.

Đorđević A., Bogdanović G. Fullerenol: A new nanopharmaceutic? Oncology. 2008. 16 (3–4): 42.

Dzyazko Y., Volfkovich Y., Perlova O. et al Effect of porosity on ion transport through polymers and polymer-based composites containing inorganic nanoparticles (Review). Springer Proc Phys. 2019. 222: 235.

Gutru R., Nagaraju N., Santoshkumar D. Functionalized fullerene embedded in Nafion matrix: A modified composite membrane electrolyte for direct methanol fuel cells. Chem Eng J. 2016. 306 (15): 43.

Saga S., Matsumoto H., Saito K. et al. Polyelectrolyte membranes based on hydro­carbon polymer containing fullerene. J Po­wer Sources. 2008. 176 (1):16.

Wang H., De Sousa R., Gasa J. et al Fabrication of new fullerene composite membranes and their application in proton exchange membrane fuel cells. J Membr Sci. 2007. 289: 277.

Tasaki K., De Sousa R., Hengbin W. et al Fullerene composite proton conducting membranes for polymer electrolyte fuel cells operating under low humidity conditions. J Membrane Sci. 281 (1): 570.

Rikame S.S., Mungray A.A., Mungray A.K. Synthesis, characterization and application of phosphorylated fullerene/sulfonated polyvinyl alcohol (pfsp) composi­te cation exchange membrane for copper removal. Sep Purif Technol. 2017. 177: 29.

Gladchenko S., Polotskaya G.A., Gribanov A.V. et al The study of polystyrene-fullerene solid-phase composites. Tech Phys. 2002. 47 (1): 102.

Dmitrenko M.E., Penkova A.V., Kuzminova A.I. et al Development and investigation of novel polyphenylene isophthalamide pervaporation membranes modified with various fullerene derivatives. Separ Purif Technol. 2019. 226: 241.

Polotskaya G., Gladchenko S., Zgonnik V. Gas diffusion and dielectric studies of polystyrene-fullerene compositions. J Appl Polym Sci. 2002. 85 (14) : 2946.

Penkova A.V., Polotskaya G.A., Toikka A.M. et al Structure and pervaporation properties of poly(phenylene-iso-phthalamide) membranes modified by fullerene. Macromolec Mater Eng C60. 2009. 294 (6): 432.

Polotskayaa G., Penkova A., Pientkac Z. et al Polymer membranes modified by fullerene C60 for pervaporation of organic mixtures. Desal Water Treat. 2010. 14: 83.

Polotskaya G., Biryulin Y., Rozanov V. Asymmetric Membranes Based on Fullerene-Containing Polyphenylene Oxide. Full, Nano, Carb Nanostruct. 2005. 12 (1–2): 371.

Chang S., Waite T., Schafer A. et al Adsorption of trace steroid estrogens to hydrophobic hollow fibre membrane. Desalination. 2002. 146: 381.

Hu J., Yuan T., Ong S. et al Identification and quantification of bisphenol A by gas chromatography and mass spectrometry in lab-scale dual membrane system. J Environ Monit. 2003. 5: 141.

Konieczny K., Klomfas G. Using activa­ted carbon to improve natural water treatment by porous membranes. Desalination. 2002. 147: 109.

Berezkin V., Viktorovskii I., Vul A. et al Fullerene microcrystals as adsorbents of organic compounds. Semiconductors. 2003. 37 (7): 802.

Ong S., Hu J., Biryulin Yu. et al Fulle­rene-containing polymer membranes for rejection of estrogenic compounds in water. Full Nano, Carb Nanostruct. 2006. 14: 463.

Jin X., Hu J., Tint M. et al Estrogenic compounds removal by fullerene-containing membranes. Desalination. 2007. 214: 83.

Biryulin Y., Kostetskii Y., Kudoyarov M. et al. Fullerene-modified Dacron track membranes and adsorption of nitroxyl. Tech Phys Lett. 2005. 31: 506.

Thines R.K., Mubarak N.M., Nizamuddin S. et al Аpplication potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem. Eng. 2017.72: 116.

Chen G-E., Zhu W-W., Xu S-J. et al A PVDF/PVB Composite UF membrane improved by f-127-wrapped fullerene for protein waste-water separation. RSC Adv. 2016. 6: 83510.

Novoselov K.S., Geim A.K., Morozov S.V. et al Electric field effect in atomically thin carbon films. Science. 2004. 306 (5696): 666.

Chen C.-H., Hu S., Shih J.-F. et al Effective synthesis of highly oxidized graphene oxide that enables wafer-scale nanopatterning: preformed acidic oxidizing medium approach. Sci Reports. 2017. 7: 3908.

Darkrim F., Levesque D. High adsorptive property of opened carbon nanotubes at 77 K. J Phys Chem. 2000. 104 (29): 6773.

Perlova O.V., Dzyazko Y.S., Palchik A.V. et al. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U (VI) compounds from water. Appl Nanosci. 2020 https://link.springer.com/article/10.1007/s13204-020-01313-1.

Cho K., Lee H., Nam Y. et al Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced gra­phene oxide/graphene oxide nanoribbons. Appl. Mater. Interfaces. 2019. 11 (30): 27004.

Rozhdestvenska L.M., Kudelko K.O., Ogenko V.M. et al. Membranes modified by nano-composites of hydrated zirconium dioxide and oxidized graphene. Ukrainian Chemistry Journal. 2020. 86 (4): 91.

Dzyazko Y.S., Ogenko V.M., Shteinberg L.Y. et al. Composite adsorbents including oxidized graphene: effect of composition on mechanical durability and adsorption of pesticides. Chem Phys Technol Surf. 2019. 10 (4): 432.

Glser, R., Weitkamp, J. Surface hydrop­hobicity or hydrophilicity of porous solids. Handbook of Porous Solids (Wiley-vch Verlag GmbH, 2002). ISBN: 9783527618286.

Luo X., Wang C., Wang L. et al. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem Eng J. 2013. 220: 98.

Dreyer D.R., Park S., Bielawski C.W. et al. The chemistry of graphene oxide. Chem Soc Rev. 2010. 39 (1): 228.

Volfkovich Y.M., Rychagov A.Y., Sosenkin V.E. et al Measuring the specific surface area of carbon nanomaterials by different methods. Russ J Electrochem. 2014. 50 (11): 1099.

Volfkovich Y.M., Filippov A.N., Bagotsky V.S. Structural properties of different materials and powders used in different fields of science and technology. (Springer, London, Heidelberg, New York, Dordrecht, 2014). ISBN: 978-1-4471-6377-0.

Volfkovich Y.M., Sosenkin V.E. Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russ Chem Rev. 2012. 81 (10): 936.

Volfkovich Y.M., Sakars A.V., Volinsky A.A. Application of the standard porosimetry method for nanomaterials. Int J Nanotechnol. 2005. 2 (3): 292.

Shulga Y.M., Baskakov S.A., Baskakova Y.V. et al Supercapacitors with graphene oxide separators and reduced graphite oxi­de electrodes. J Power Sources. 2015. 279: 722.

Volfkovich Y.M., Lobach A.S., Spitsyna N.G. et al .Hydrophilic and hydrophobic pores in reduced graphene oxide aerogel. J Porous Mat. 2019. 26 (4): 1111.

Kononenko N.A., Berezina N.P., Vol’fko­vich Y.M. et al. Investigation of ion-exchange materials structure by standard porosimetry method. J Appl Chem USSR. 1985. 58 (10): 2029.

Volfkovich Y.M., Sosenkin V.E., Nikolskaya N.F. et al. Porous structure and hydrophilic-hydrophobic properties of gas diffusion layers of the electrodes in proton-exchange membrane fuel cells. Russ J Electrochem. 2008. 44 (3): 278.

Myronchuk V., Zmievskii Y., Dzyazko Y. et al. Electrodialytic whey demineralization involving polymer-inorganic membranes, anion exchange resin and graphene-containing composite. Acta Periodica Technologica. 2019. 50: 163.

Dzyazko Y., Volfkovich Y., Chaban M. Сomposites containing inorganic ion exchangers and graphene oxide: hydrophilic–hydrophobic and sorption properties (Review). Springer Proc Phys. 2021. 246: 93.

Ding J.-H., Zhao H.-R., Ji D. et al. Ultrafast molecular sieving through functiona­lized graphene membranes. Nanoscale. 2019. 11: 3896.

Han R., Wu P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by in situ oxidation of MXene. J Mater Chem A. 2019. 7: 6475.

Tan P., Sun J., Hu Y. et al. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater. 2015. 297: 251.

Ma F.-f., Zhang D., Huang T. et al. Ultrasonication-assisted deposition of graphene oxide on electrospun poly(vinylidene fluoride) membrane and the adsorption behavior. Chem Eng J. 2019. 358: 1065.

Mahmoud K.A., Mansoor B., Mansour A. et al. Functional graphene nanosheets: The next generation membranes for water desalination. Desalination. 2015. 356: 208.

Lohrasebi A., Rikhtehgaran S. Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 2018. 11: 2229.

Dou H., Xu M., Jiang B. et al. Bioinspired graphene oxide membranes with dual transport mechanisms for precise molecular separation. Adv Func Mat. 2019. 29: 1905229.

Wu Z.Y., Li C., Liang, H.-W. et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angewandte Chem Int Edit. 2013. 125 (10): 2997.

Niu J., Domenech-Carb A., Primo A. Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Adv. 2019. 9: 99.

Goodell B., Xie X., Qian Y. et al Carbon Nanotubes Produced from Natural Cellulosic Materials. J. Nanosci. Nanotechnol. 2008. 8: 2472.

Dzyaz’ko Y.S., Belyakov V.N., Stefa­nyak N.V. et al Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem. 2006. 79 (5): 769.

Martí-Calatayud M.C., García-Gabal­dón M, Pérez-Herranz V. et al. Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Adv. 2015. 5: 46348.

Dzyazko Y., Rozhdestveskaya L., Zmiev­skii Y. et al. Composite inorganic anion exchange membrane for electrodialytic desalination of milky whey. Mater Today: Proc. 2019. 6 (2): 250.

Myronchuk V., Zmievskii Y., Dzyazko,Y. et al Whey desalination using polymer and inorganic membranes: operation conditions. Acta Periodica Technologica. 2018. 49: 103.

Dzyazko Y.S., Rozhdestvenska L.M., Va­si­lyuk S.L. et al. Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Let. 2017. 12: 438.

Saki S., Uzal N., Ates N. The size and concentration effects of Al2O3 nanoparticles on PSF membranes with enhanced structural stability and filtration performance. Desal Water Treat. 2017. 84: 215.

Pang R., Li X., Li J. et al. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination. 2014. 332. 60.

Dubrovina L., Naboka O., Ogenko V. et al One-pot synthesis of carbon nanotubes from renewable resource: cellulose acetate. J Mater Sci. 2014. 49: 1144.

Goncharuk V.V., Dubrovin I..V, Dubrovina L.V. et al. Carbon-silica composites with cellulose acetate, polyisocyanate and copper chloride. Physics and Chemistry of Solid State. 2016. 17 (2): 241.

Goncharuk V.V., Ogenko V.M., Dubrovina L.V. et al. Modification of tubular ceramic membranes with pyrocarbon and silica. Ukrainian Chemistry Journal. 2019. 85 (11): 52.

Goncharuk V.V., Kucheruk D.D., Dubrovina L.V. et al. Modification of tubular ceramic membranes by pyrocarbon from carbonized polymers. Ukrainian Chemistry Journal. 2019. 85 (6): 97.

Goncharuk V.V., Ogenko V.M., Kucheruk D.D. et al. Water purification by microfiltration ceramic membranes modified with pyrocarbon and silica. J Water Chem Technol. 2019. 41 (4): 246.

Goncharuk V.V., Dubrovina L.V., Kucheruk D.D. et al (Water purification of dyes by ceramic membrane modified by pyrocarbon from carbonized polymers. J Water Chem Technol. 2016. 38 (3): 163.

Liu W., Wang D., Soomro R. et al. Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination. J Membr Sci. 2019. 591: 117323.

Downloads

Download data is not yet available.