PHASE EQUILIBRIA IN THE NaCl–CaCl2–CaO SYSTEM
№2

Keywords

sodium and potassium chlorides, calcium oxide, phase equilibria, differential thermal analysis.

How to Cite

Omelchuk, A., Skryptun, I., Zakharchenko, N., Bosenko , O., Savchuk , R., & Gritsay , L. (2021). PHASE EQUILIBRIA IN THE NaCl–CaCl2–CaO SYSTEM. Ukrainian Chemistry Journal, 87(2), 77-86. https://doi.org/10.33609/2708-129X.87.02.2021.77-86

Abstract

The phase equilibria of the ternary system CaCl2 – NaCl – CaO in the area which enriched of calcium and sodium chloride were investigated by the methods of differential-thermal analysis and powder X-ray phase analysis. In the systems were determined the equilibrium concentration of calcium oxide and the composition of the phases, which at the same time exist in an equilibrium state at different temperatures. The surfaces of liquidus and solidus were established, the compositions of the sections of the ternary system CaCl2–NaCl–CaO were defined, which recommended for electrochemical reduction of refractory metal oxides (titanium, zirconium and other), which allow electrolysis in the temperature range from 550 to 1000 °С. Five polythermal sections of the NaCl – CaCl2 – CaO ternary system were studied. For each polythermal section the regions of existence of the liquid and solid phases were established. For each polythermal section state diagrams were constructed. Used X-Ray phase analyses it was established the compositions of liquid and solid phases for each polythermal sections. The phases of which the system consists were determined. At a constant ratio of components [NaCl]:[CaCl2] = 1.06 (mol.) in the melts of the ternary system CaCl2 – NaCl – CaO, the equilibrium content of calcium oxide reaches 12.0 mol.%, while their crystallization temperature does not exceed 550 °C. This allows us to recommend mixtures of this composition for electrochemical reduction of refractory metal oxides in a wide range of temperatures (from 550 to 1000 °C) with a high content of both calcium and sodium chlorides (not less than 40 mol.%) and oxide. calcium (up to 12.0 mol.%). The eutectic of this ternary system has a melting point of 480 ° C and corresponds to he composition (mol.%): CaCl2 (45.8) – NaCl (47.0) – CaO (7.2).

https://doi.org/10.33609/2708-129X.87.02.2021.77-86
№2

References

1. Mohandas K.S.Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis: An overview: Fray International Symposium:Metals and Materials Processing in a Clean Environment. 2011. 3: 195. doi: 10.13140/2.1.2610.4969.
2. Abdelkader A.M., TripuraneniKilby K., Cox A., Fray D.J. DC Voltammetry of Electro-deoxidation of Solid Oxides. Chem. Rev. 2013. 113: 2863. doi: 10.1021/cr200305x
3. International Patent, PCT/GB99/01781, WO99/64638 Removal of oxygen from metal oxides and solid solutions by electro­lysis in a fused salts / Fray D. J., Farthing T.W. and Chen Z. – (1999). (Priority UK filing: GB9812169, 5 June 1998).
4. Chen Zh. G., Fray D.J., Farthing T.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000. 407: 361. doi: 10.1038/35030069
5. Wenz D. A., Johnson I., Wolson R. D. System CaCl2–CaO. J. Chem. Eng. Data. 1969. 14: 250. doi: 10.1021/je60041a027
6. Neumann B., Kroeger C., Juettner H., Die systemeerdalkalichlorid-erdalkalioxyd und die zersetzung der erdalkalichloridedurchwasserdampf. Z. Elektrochem. Angew. Phys. Chem. 1935. 41: 725. doi: 10.1002/bbpc.19350411005
7. The Fact™ and FactSage™ databases. URL: http://www.crct.polymtl.ca/fact/documentation/FS_All_PDs.htm. (Last visit 26.08. 2020)
8. Freidina E.B., Fray D.J. Study of the ternary system CaCl2-NaCl-CaO by DSC. Thermochim. Acta. 2000. 354: 59. doi: 10.1016/S0040-6031(00)00454-8.
9. Savchuk R.N., Gritsai L. V., Omel’chuk A.A Solubility of Calcium and Zirconium Oxi­des in Melts CaO–(CaCl2–MCl)eut and CaO–CaCl2–MCl (M – Li, Na, K). ECS Trans. 2016. 75(15): 373. doi: 10.1149/07515.0373ecst.
10. Wang Sh., Zhang F., Liu X., Zhang L. CaO solubility and activity coefficient in molten salts CaCl2–x (x = 0, NaCl, KCl, SrCl2, BaCl2 and LiCl). ThermochimicaActa. 2008. 470: 105. doi: 10.1016/j.tca.2008.02.007.
11. BarinIhsan. Thermochemical data of pure substances. 3. ed. 1995. doi: 10.1002/9783527619825.
12. GoroshenkoYa.G. Phisiko-chimicheskii analis gomogenny khigeterogennykh system. Kiev: Naukovadumka. 1978. – 490 p. [in Russian].
13. Rodyakin V.V. Kaltsii, ego soedineniyaisplavy. M.: Metallurgiya, 1967. (in Russian)
14. Hattori T., Ikezawa H., Hirano R. Mochinaga J. Phase Diagram of Ternary PrCl3–CaCl2–NaCl System. Nippon Kagaku Kaishi. 1982. (6): 925. doi: 10.1246/nikkashi.1982.952
15. Morozov I.S., Svetlova Z.N., Klyukvina L.V. System NaCl–CaCl2–LaCl3. ZkurnalNeorganicheskoiChimii. 1957. 2(7): 1639.
16. Seltveit A., Flood H. Determination of the Solidus Curve by a Tracer Technique. The System CaCl2–NaCl. Acta Chem. Scand. 1958. 12: 1030. doi: 10.3891/acta.chem.scand.121030
17. Savchuk R.N., Gritsai L.V., Blyznyuk A.V. and Skryptun I.N. Thermal Analysis of the System NaCl–CaCl2–CaO. ECS Transactions. 2018. 86(14): 149. doi: 10.1149/08614.0149ecst.

Downloads

Download data is not yet available.