REACTIVITY OF NUCLEOPHILES AND α-EFFECT IN SUBSTITUTION PROCESSES AT ELECTRON - DEFICIENCY CENTERS (Part 2)
№1

Keywords

functionalized surfactants, α-nucleophiles, micellar systems, hydroxylamine, oximes, amidoximes, hydroxamic acids, peroxides

How to Cite

Popov, A., Kapitanov, I., Serdyuk, A., & Sumeiko, A. (2020). REACTIVITY OF NUCLEOPHILES AND α-EFFECT IN SUBSTITUTION PROCESSES AT ELECTRON - DEFICIENCY CENTERS (Part 2). Ukrainian Chemistry Journal, 86(8), 77-100. https://doi.org/10.33609/2708-129X.86.8.2020.77-100

Abstract

The review analyzes issues related to the reactivity of nucleophiles and the manifestation of the α-effect in substitution processes at electron-deficient centers. The fundamental aspects of this phenomenon, as well as the possibilities and prospects of using α-nucleophiles in systems for the highly efficient degradation of substrates - ecotoxicants of various natures, are discussed. In the first part of the review such aspects were observed: inorganic α-nucleophiles as the most effective class of reagents for the decomposition of organic phosphorus compounds, hydroxylamine, its N-alkyl derivatives, oximes, and hydroxamic acids, reactivity of the НОО– anion in the processes of acyl group transfer, reactivity of oximate ions, inorganic α-nucleophiles as the basis of formulations for the degradation of neurotoxins, vesicants, and organophosphorus pesticides, design of inhibited acetylcholinesterase reactivators based on hydroxylamine derivatives, ways of structural modification of α-nucleophiles and systems based on them. The data on the reactivity of typical inorganic α-nucleophiles in the cleavage of acyl-containing substrates, including phosphorus acid esters, which provide abnormally high reaction rates in comparison with other supernucleophiles, are analyzed. Various types of such α-nucleophiles, features of their structure and reactivity are considered. It was shown that an important feature of hydroxylamine, oximes, and hydroxamic acids is the presence of a fragment with adjacent O and N (–N – O – H) atoms containing one or more lone electron pairs, which determines their belonging to the class of α-nucleophiles. It has been shown that a many of factors can be responsible for the manifestation of the α-effect and its magnitude, the main of which is the destabilization of the ground state of the nucleophile due to repulsion of lone electron pairs, stabilization of the transition state, the unusual thermodynamic stability of reaction products, solvation effects of the solvent, type of hybridization of the electrophilic center, etc.

https://doi.org/10.33609/2708-129X.86.8.2020.77-100
№1

References

94. Ariga K., Kunitake T. Supramolecular chemistry – fundamentals and applications. (Berlin/Heidelberg, Germany: Springer-Verlag., 2006).
95. Wasserscheid P., Welton T. Ionic Liquids in Synthesis. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008).
96. Holmberg K. Handbook of applied surface and colloid chemistry. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2001).
97. Savvin S., Chernova R., Shtykov S. Surfactants. (М.: Nauka, 1991). [in Russian].
98. Mittela K. Micelle formation, solubilization, microemulsions. (М.: Mir, 1980). [in Russian].
99. Fendler E., Fendler D. Micellar catalysis in organic reactions // Methods and achievements in physical and organic chemistry. (М.: Mir, 1973). [in Russian].
100. Berezin I., Martinek K. Fundamentals of the physical chemistry of enzymatic catalysis. (М.: Vysshaya Shola, 1977). [in Russian].
101. Kustov K., Beletskaya I. “Green Chemistry” - a new way of thinking. J. Russ. Chem. Society to them D. Mendeleev. 2004. 48 (6): 3.
102. Aripov E., Orel M., Aminov S. Hydrophobic interactions in binary solutions of surfactants. (Tashkent: Fan, 1980). [in Russian].
103. Pasupati М. The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids. Adv. Coll. Int. Sci. 1967. 1 (3): 242.
104. Pasupati М. The hydration of micelles of association colloidal electrolytes. J. Coll. Sci. 1964. 19 (8): 722.
105. Kamrath R., Frances E. Mass-action model of mixed micellization. J. Phys. Chem. 1984. 88 (8): 1642.
106. Moroi Y., Sugii R., Matuura R. Examination of micelle formation by phase rule. J. Coll. Int. Sci. 1984. 98 (1): 184.
107. Gordon D. Organic chemistry of electrolyte solutions. (M.: Mir, 1979). [in Russian].
108. Hall B., Carlstrom G. Hydration of ionic surfactant micelles from water oxygen-17 magnetic relaxation. J. Phys. Chem. 1981. 85 (14): 2142.
109. Menger F., Doll D. On the structure of micelles. J. Am. Chem. Soc. 1984. 106 (4.): 1109.
110. James D., Robinson B., White N. Dynamics of small molecule-micelle interactions: Charge and pH effects on the kinetics of the interaction of dyes with micelles. J. Coll. Int. Sci. 1977. 59 (2): 328.
111. Stilbs P. Fourier transform NMR pulsed-gradient spin-echo (FT-PGSE) self-diffusion measurements of solubilization equilibria in SDS solutions. J. Coll. Int. Sci. 1982. 87 (2): 385.
112. Miyashita Y., Hayano S. Kinetic Study of the Penetration of an Anthraquinoid Acidic Dye into Cationic Micelles. Bull. Chem. Soc. Jap. 1981. 54 (11): 3249.
113. Kapitanov I., Belousova I., Shumeiko A., Kostrikin M., Prokop’eva T., Popov A. Supernucleophilic systems based on functionalized surfactants in the decomposition of 4- nitrophenyl esters derived from phosphorus and sulfur acids: II. Influence of the length of hydrophobic alkyl substituents on micellar effects of functionalized monomeric and dimeric imidazolium surfactants. Russ. J. Org. Chem. 2014. 50 (5): 693.
114. Martinek K., Yatsimirski A., Osipov A., Berezin I. Micellar effects on kinetics and equilibrium of synthesis and hydrolysis of benzylideneaniline: A general kinetic conception of micellar catalysis. Tetrahedron. 1973. 29 (7): 963.
115. Yatsimirsky A. Ph. D (Chem) Thesis. (Kyiv, 1972). [in Russian].
116. Cheong M., Ariffin A., Khan M. A comparative analysis of pseudophase ion-exchange (PIE) model and Berezin pseudophase (BPP) model: Analysis of kinetic data for ionic micellar-mediated semi-ionic bimolecular reaction. Bull. Korean Chem. Soc. 2007. 28 (7): 1135.
117. Blasko A., Bunton C., Cerichelli G., McKenzie D. A NMR study of ion exchange in cationic micelles. Success and failures of models. J. Phys. Chem. 1993. 97 (43): 11324.
118. Kapitanov I., Mirgorodskaya A., Valeeva F., Gathergood N., Kuca K., Zakharova L., Karpichev E. Physicochemical properties and esterolytic reactivity of oxime functionalized surfactants in pH-responsive mixed micellar system. Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2017. 524: 143.
119. Singh N., Karpichev Ye., Tiwari A., Kuca K., Ghosh K. Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates. Journal of Molecular Liquids. 2015. 208: 237.
120. Quina F., Chaimovich H. Ion exchange in micellar solution. 1. Conceptual framework for ion exchange in micellar solution. J. Phys. Chem. 1979. 83 (11): 1844.
121. Menger F., Portnoy С. On the chemistry of reactions proceedings inside molecular aggregates. J. Am. Chem. Soc. 1967. 89 (18): 4698.
122. Al-Lohedan H., Bunton C., Romsted L. Micellar effects upon the reaction of betaine esters with hydroxide ion. J. Phys. Chem. 1981. 85 (14): 2123.
123. Al-Lohedan H., Bunton C. Ion binding and micellar effects upon the reaction of carboxylic anhydrides and carbonate esters. J. Org. Chem. 1982. 47 (7): 1160.
124. Raghavan P., Srinivasan V., Venkatasbramanian N. Micellar effects in deacylation of p-nitrophenyl benzoate. Indian J. Chem. 1982. 21B (10): 423.
125. Brinchi L., Profio P., Germani R., Savelli G., Bunton C. A quantitative analysis of the effect of head group bulk on SN2 and E2 reactions in cationic micelles. Langmuir. 1997. 13 (17): 4583.
126. Begunov A., Rutkovsky G. Micellar catalysis. II. The effect of the nature of surfactants on the alkaline hydrolysis of o-isobutyl-o-p-nitrophenylmethylphosphonate. Russ. J. Org. Chem. 1981. 17 (9): 1668.
127. Bunton C., Robinson L. Micellar effect upon the reaction of p-nitrophenyl diphenyl phosphate with hydroxide and fluoride ions. J. Org. Chem. 1969. 94 (4): 773.
128. Prokop’eva T., Kapitanov I., Belousova I., Shumeiko A., Kostrikin M., Serdyuk A., Turovskaya M., Razumova N. Reactivity of co-micellar systems based on di-meric functionalized tetraalkylammonium surfactant in phosphoryl and sulfonyl group transfer processes. Russ. J. Org. Chem. 2017. 53 (4): 510.
129. Yatsimirsky A., Martinek K., Berezin I. Mechanism of micellar effects on acylation of aryl oximes by p-nitrophenyl-carboxylates. Tetrahedron. 1971. 27: 2855.
130. Kapitanov I., Belousova I., Turovskaya M., Karpichev E., Prokopeva T., Popov A. Reactivity of micellar systems based on supernucleophilic functional surfactants in processes of. acyl group transfer. Russ. J. Org. Chem. 2012. 48 (5): 651.
131. Bunton C., Ihara J. Micellar effects upon dephosphorilation and deacylation by oximate ions. J. Org. Chem. 1977. 42 (17): 2865.
132. Reactivity of micelle-forming 1-alkyl-3-(1-oximinoethyl) pyridinium halides in acyl group transfers / Turovskaya M., Kapitanov I., Belousova I., Tuchinskaya K., Shu¬meiko A., Kostrikin M., Razumova N., Prokop’eva T., Popov A. // Theoret. and Experim. Chem. 2011. 47 (1): 21.
133. Umberto T. Catalysis of ester hydrolysis by cationic micelles of surfactants containning the imidazole ring. J. Chem. Soc., Perkin Trans. 2. 1976. (6): 771.
134. Moss R., Scrimin P., Bhattacharya S., Swarup S. An imidazole-functionalized phosphatidylcholine derivative: nucleophilic vesicles with adjustable reactivity. J. Am. Chem. Soc. 1987. 109 (20): 6209.
135. Gitler C., Ochoa-Solano A. Carlos G. Nonpolar contributions to the rate of nucleophilic displacements of p-nitrophenyl esters in micelles. J. Am. Chem. Soc. 1968. 90 (18): 5004.
136. Moss R., Nahas R., Ramaswami S. Sequential bifunctional micellar catalysis. J. Am. Chem. Soc. 1977. 99 (2): 627.
137. Brown J., Bunton C., Diaz S., Ihara Y. Dephosphorylation in functional micelles. The role of the imidazole group. J. Org. Chem. 1980. 45 (21): 4169.
138. Moss R., Lee Y., Lukas T. Micellar stereoselectivity. Cleavage of diastereomeric substrates by functional surfactant micelles. J. Am. Chem. Soc. 1979. 101 (9): 2499.
139. Moss R., Nahas R., Ramaswami S., Sanders W. A comparison of hydroxyl- and imidazole-functionalized micellar catalysts in ester hydrolyses. Tetrahedron Lett. 1975. 16 (39): 3379.
140. Moss R., Nahas R., Lukas T. A cysteine-functionalized micellar catalyst. Tetrahedron Lett. 1978. 19 (6): 507.
141. Bunton C., Ionescu L. Hydrolysis of di- and trisubstituted phosphate esters catalyzed by nucleophilic surfactants. J. Am. Chem. Soc. 1973. 95 (9): 2912.
142. Bunton C., McAneny M. Micellar effects on the hydrolysis of p-nitrobenzoyl choline and the related N-hexadecyl ester. J. Org. Chem. 1976. 41 (1): 36.
143. Moss R., Ihara Y. Cleavage of phosphate esters by hydroxyl-functionalized micellar and vesicular reagents. J. Org. Chem. 1983. 48 (4): 588.
144. Menger F., Whitesell L. A protease mimic with turnover capabilities. J. Am. Chem. Soc. 1985. 107 (3): 707.
145. Moss R., Bizzigotti G., Huang C. Nucleophilic esterolytic and displacement reactions of a micellar thiocholine surfactant. J. Am. Chem. Soc. 1980. 102 (2):.754.
146. Moss R., Hendrickson T., Bizzigotti G. Esterolytic chemistry of vesicular thiocholine surfactant. J. Am. Chem. Soc. 1986. 108 (18): 5520.
147. Popov A., Kapitanov I., Orlov M., Belousova I., Tuchinskaya K., Prokop’eva T. 1-Methyl-3-hexadecyl-2-(oximinomethyl)imidazolium bromide as a new highly efficient, low-basicity reagent for the decomposition of acyl-containing ecotoxicants. Theoret. and Experim. Chem. 2010. 46 (5): 309.
148. Reiner R., Rossmann K. Nukleophile Substanzen zur Entgiftung von Phosphorestern. Monatshefte für Chemie. 1982. 113 (2): 223.
149. Пат. DE 2844667A1. Reiner R., Rossmann K. Mittel zur Decontamination von mit phosphorhaltigen Giftgasen und Pestiziden verunreinigten Gegenstanden und Korperteilen. 1980.
150. Belousova I., Kapitanov I., Shumeiko A., Anikeev A. Turovskaya M., Zubareva T., Panchenko B., Prokop’eva T., Popov A. Role of the hydrophobic properties of functional detergents on micellar effects in the decomposition of ecotoxicants. Theoret. and Experim. Chem. 2010. 46 (4): 225.
151. Kunitake T., Okahata Y., Tanamachi S., Ando R. Nucleophile ion pairs. 6. Catalytic hydrolysis of p-nitrophenyl acetate by zwitterionic hydroxamate nucleophiles in representative micellar systems. Bull. Chem. Soc. Jap. 1979. 52: 1967.
152. Hershfield R., Bender M. Nucleophilic and metal ion acceleration of ester hydrolysis in a hydrophobic complex. A reactive enzyme model system. J. Am. Chem. Soc. 1972. 94 (4): 1376.
153. Bunton C., Gillitt N., Foroudian H. A quantitative treatment of dephosphorilation by an amphiphilic hydroxamate ion. The role of micellar charge. Langmuir. 1998. 14 (16): 4415.
154. Bunton C.A., Hamed F.H., Romsted L.S. Quantitative treatment of reaction rates in functional micelles and comicelles. J. Phys. Chem. 1982. 86 (11): 2103.
155. Belousova I., Kapitanov I., Shumeiko A., Turovskaya M., Prokop’eva T., Popov A. Structure of the head group, nucleophilicity, and micellar effects of functional detergents in acyl transfer reactions. Theoret. and Experim. Chem. 2008. 44 (2): 93.
156. Pillersdorf A., Katzhendler J. Dipolar micelles. 8. Hydrolysis of substituted phenyl esters in a hydroxamic acid surfactant. J. Org. Chem. 1979. 44 (4): 549.
157. Simanenko Yu., Karpichev E., Prokopyeva T., Latt A., Popov A., Savelova V., Belousova I. Functional detergents containing imidazolium core and typical fragments of α-nucleophiles - the basis of highly efficient micellar systems for the splitting of esters of phosphorus acids. Russ. J. Org. Chem. 2004. 40 (2): 234.
158. Karpichev E. Ph. D (Chem.) Thesis. (Donetsk, 2002). [in Russian].
159. Popov A., Simanenko Yu., Prokopieva T., Karpichev E., Matveev A., Matvienko V., Belousova I., Savelova V. New functional detergents based on imidazole - effective reagents for the breakdown of esters of organic acids. Theoret. and Experim. Chem. 2003. 39 (1): 14.
160. Belousova I., Karpichev E., Prokopyeva T., Lukyanova L., Savelova V., Popov A. The influence of the nature of the head group on the micellar effects of functional cationic surfactants in the reactions of acyl transfer. Theoret. and Experim. Chem. 2007. 43 (1): 30.
161. Prokop’eva T., Kapitanov I., Belousova I., Shumeiko A., Kostrikin M., Turovskaya M., Razumova N., Popov A. Supernucleophilic systems based on func-tionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids: III. Reactivity of mixed micellar systems based on tetraalkylammonium and imidazolium surfactants. Russ. J. Org. Chem. 2015. 51 (8):1083.
162. Kapitanov I., Serdyuk A., Shumeiko A., Prokop’eva T., Popov A. Acid-base properties of functionalized surfactants in micellar systems. Ukr. J. Chem. 2017. 83 (8): 94.
163. Turovskaya M., Prokop’eva T., Karpichev E., Shumeiko A., Kostrikin M., Savelova V., Kapitanov I., Popov A. Nucleophilicity of functional surface active substances in the transfer of phosphoryl groups. Theoret. and Experim. Chem. 2006. 42 (5): 295.
164. Kotoučová H., Mazáč J., Cibulka R., Hampl F., Liška F. Unusual cource of the p-nitrophenyl phosphate esters cleavage by 3-hydroximinoalkylpyridinium salts in micellar solutions. Chem. Lett. 1998. 27 (7): 649.
165. Kotoučová H., Cibulka R., Hampl F., Liška F. Amphiphilic quaternary piridinium ketoximes as functional hydrolytic micellar catalysts – does the nucleophilic function position influence their reactivity? J. Mol. Catal. A. 2001. 174: 59.
166. Cibulka R., Hampl F., Kotoučová H., Mazáč J., Liška F. Quaternary pyridinium ketoximes – new efficient micellar hydrolytic catalysts. Collect. Czech. Chem. Comm. 2000. 65 (2): 227.
167. Kivala M., Cibulka R., Hampl F. Cleavage of 4-nitrophenyl diphenyl phosphate by isomeric quaternary pyridinium ketoximes – how can structure and lipophilicity of functional surfactants influence their reactivity in micelles and microemulsions? Collect. Czech. Chem. Comm. 2006. 71, (12): 1642.
168. Popov A., Simanenko Yu., Karpichev E., Matveev A., Matvienko V., Prokopyeva T. Micellar effects of functional detergents - 1-cetyl-3- (2-hydroxyminopropyl)- imida¬zo¬lium halides in reactions with 4-nitrophenyltoluenesulfonate and 4-nitrophenyl di¬ethylphosphate. Theoret. and Experim. Chem. 2001. 37 ( 6): 341.
169. Simanenko Yu., Karpichev E., Prokop’eva T., Panchenko B., Bunton C. Micelles of an oxime-functionalized imidazolium surfactant. Reactivities at phosphorryl and sulfonyl groups. Langmuir. 2001. 17 (3): 581.
170. Simanenko Yu., Popov A., Karpichev E., Prokopyeva T., Savelova V., Bunton K. Micellar effects of functional detergents - 1-cetyl-3- (2-hydroxyminopropyl)- imidazolium halides in reactions with 4-nitrophenyltosylate, diethylphosphate and diethylphosphonate. Russ. J. Org. Chem. 2002. 38 (9): 1369.
171. Kapitanov I. Nucleophilicity of micellar systems based on amphiphilic derivatives of 2-(oximinomethyl)-imidazole in the decomposition of 4-nitrophenyl diethyl phosphate. Theoret. and Experim. Chem. 2011. 47 (5): 317.
172. Shumeiko A., Kostrikin M., Kapitanov I., Serdyuk A., Burakov N., Popov A. Syn¬thesis of functionalized surfactants on the basis of imidazole, pyridine and alkylamines. Ukr. J. Chem. 2019. 85 (8): 94.
173. Zubareva T., Anikeev A., Karpichev E., Kapitanov I., Proko p’eva T., Popov A. Catalysis of the alkaline hydrolysis of 4-nitrophenyl diethyl phosphonate by cati-onic dimeric surfactant micelles. Theoret. and Experim. Chem. 2011. 47 (2): 108.
174. Moss R., Kim K., Swarup S. Efficient catalytic cleavage of reactive phosphates by an o-iodosobenzoate functionalized surfactant. J. Am. Chem. Soc. 1986. 108 (4): 788.
175. Moss R., Ganguli S. Iodosobenzoate-functionalized surfactant vesicles: adjustable reactivity in reactive phosphate cleavage. Tetrahedron Lett. 1989. 30 (16): 2071.
176. Moss R., Zhang H. Toward a broad spectrum decontaminant for reactive toxic phosphates/phosphonates: N-alkyl-3-iodosopyridinium-4-carboxylates. Tetrahedron Lett. 1993. 34 (39): 6225.
177. Karyakin Yu., Angelov I. Pure chemicals. (М.: Khimiya, 1974). [in Russian].
178. Duynstee E., Grunwald E. Organic Reactions Occurring in or on Micelles. I. Reaction Rate Studies of the Alkaline Fading of Triphenylmethane Dyes and Sulfonphthalein Indicators in the Presence of Detergent Salts. J. Am. Chem. Soc. 1959. 81 (17): 4540.
179. Ginsburg S., Wilson I. Oximes of the Pyridine Series. J. Am. Chem. Soc. 1957. 79 (2): 481.
180. Sal¬vador R., Saucier M., Simon D., Goyer R. Acetylcholinesterase reactivators. Pyridyl and anilyl trifluoromethyl ketoximes. J. Med. Chem. 1972. 15 (6): 646.
181. Burakov N., Kanibolotsky A., Osichenko G., Mikhailov V., Savelova V., Kosmynin V. Reactions of N, N-dialkylcarboxamides with halogens. Russ. J. Org. Chem. 2001. 37 (9): 1276.
182. Korostelev P.. Preparation of solutions for chemical analytical work. (М.: Khimiya, 1971). [in Russian].
183. Albert A., Sergent E. Ionization Constants of Acids and Bases. (New York: John Wiley & Sons,, 1962).
184. Afifi A., Eisen S. Statistical analysis. The approach using computers. (М.: Мир, 1982).
185. Yao H., Richardson D. Bicarbonate Surfoxidants: Micellar Oxidations of Aryl Sulfides with Bicarbonate-Activated Hydrogen Peroxide. J. Am. Chem. Soc. 2003. 125 (20): 6211.
186. Bunton C., Mhala M., Moffatt J., Monarres D., Savelli G. Micellar effects upon dephosphorylation by peroxy anions. J. Org. Chem. 1984. 49 (3): 426.
187. Bunton C., Foroudian H. A quantitative treatment of micellar effects upon dephosphorylation by the hydroperoxide anion. Langmuir. 1993. 9 (11): 2832.
188. Simanenko Yu., Popov A., Prokopyeva T, Karpichev E., Belousova I., Savelova V. The micellar effects of cationic detergents in the reactions of the splitting of ecoto¬xicant substrates with hydroxide-ion. Theoret. and Experim. Chem. 2002. 38 (4): 238.
189. Savelova V., Popov A., Vakhitova L., Solomoychenko T., Sadovsky Y., Prokopyeva T., Skrypka A., Panchenko B. The nucleophilic reactivity of НО– and НО2 – anions in water-alcohol mixtures and НСО4 – anions in water. Russ. J. Org. Chem. 2005. 41 (12): 1810.
190. Lobachev V., Savelova V., Prokopyeva T. Catalysis by bicarbonate and silicate ions of the oxidation of diethyl sulfide with hydrogen peroxide in water and water-alcohol mixtures. Theoret. and Experim. Chem. 2004. 40 (3): 157.
191. Zaugg H. The Bromination of Some N-Substituted Phthalimides with N-Bromosuccinimide. J. Am. Chem. Soc. 1954. 76 (22): 5818.
192. Buckles R.E., Johnson R.C., Probst W.J. Comparison of N-Bromoacetamide and N-Bromosuccinimide as Brominating Agents. J. Org. Chem. 1957. 22 (1): 55.
193. Ramachandrappa R., Puttaswamy R., Mayanna S., Gowda N. Kinetics and mechanism of oxidation of aspirin by bromamine-T, N-bromosuccinimide, and N-bromophthalimide. Int. J. Chem. Kinet. 1998. 30 (6): 407.
194. Ryzhakov A., Andreev V., Rodina L. Molecular complexes of N-oxides of quinolines and isoquinolines with bromine. Russ. J. Org. Chem. 1996. 32 (6): 128.
195. Huyskens P., D'Hondt J., Govaerts F., Zeegers-Huyskens Th. Energy parameters and charge-transfer spectra of the complexes of bromine with substituted pyridines. J. Phys. Chem. 1973. 77 (13): 1662.
196. Nakagawa T., Andrews L., Keefer R. The Tribromide Equilibrium in Aqueous Acetic Acid. J. Phys. Chem. 1957. 61 (7): 1007.
197. Hudson R. Reactivity and reaction pathways. (М.: Mir, 1977). [in Russian].
198. Aubort J., Hudson R., Woodcock R. Enhanced nucleophilic reactivity: The “disappearing” lone-pair. Tetrahedron Lett. 1973. 14 (24): 2229.
199. Savelova V., Banton K., Prokopyeva T., Turovskaya M., Karpichev E., Mikhailov V., Kanibolotsky A., Burakov N., Popov A. Organo-complexes of the trihalide ion - α-nucleophiles and effective oxidizing agents in the decomposition of FOS in water and surfactant micelles. Theoret. and Experim. Chem. 2004. 40 (5): 291.
200. Kar G., Saikia A., Bora U., Dehury S., Chandhuri M. Synthesis of cetyltrimethyl-ammonium tribromide (CTMATB) and its application in the selective oxidation of sul¬fides to sulfoxides. Tetrahedron Lett. 2003. 44 (24): 4503.
201. Chiappe C., Leandri E., Pieraccini D. Highly efficient bromination of aromatic compounds using 3-methylimidazolium tribromide as reagent/solvent. Chem. Commun. 2004. (22): 2536.
202. Mittal K., Fendler E. Solution behavior of surfactant. (New York: Plenum Press, 1980).
203. Toullec J., Moukawim M. Cetyltrimethylammonium hydroperoxide: an efficient reagent for promoting phosphate ester hydrolysis. Chem. Commun. 1996. (2): 221.
204. Cerichelli G., Mancini G., Luchetti L. Surfactant Control of the Ortho/Para Ratio in the Bromination of Anilines. Tetrahedron. 1994. 50 (12): 3797.
205. Jencks W. The Reaction of Hydroxylamine with Activated Acyl Groups. II. Mechanism of the Reaction. J. Am. Chem. Soc. 1958. 80 (17): 4585.
206. Lobachev V., Rudakov E. Chemistry of peroxynitrite. Kinetics and reaction mechanisms. Uspekhi Khimii. 2006. 75 (5): 422.
207. Hughes M., Nicklin H. Structure of tetrasulphur dinitride. J. Chem. Soc. A. 1971. (1): 164.
208. Amyes T., Diver S., Richard J., Rivas F., Toth K. Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous so¬lution. J. Am. Chem. Soc. 2004. 126 (13): 4366.
209. Alder R., Allen P., Williams S. Stable carbenes as strong bases. J. Chem. Soc. Chem. Commun. 1995. (12): 1267.
210. Simanenko Yu., Popov A., Prokopyeva T. Intramolecular catalysis in the reactions of hydroxamic acids. Theoret. and Experim. Chem. 2003. 39 (5): 280.
211. Epstein J., Cannon P., Michel H., Hackley B., Mosher W. Charge effect in nucleo-philic displacement reactions. J. Am. Chem. Soc. 1967. 89 (12): 2937.

Downloads

Download data is not yet available.