EFFECT OF WATER-SOLUBLE POLYMER NV-1A ON ELECTROCHEMICAL PARAMETERS OF SULFUR ELECTRODE

O.V. Potapenko¹,2, A.V. Potapenko¹,2, O.V. Krushevskyi¹, M. Zhou²

¹Joint Department of Electrochemical Energy Systems NAS of Ukraine
²Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, P.R. China
Email: avoloshka@ukr.net

Studies have shown the possibility of a long cycle of sulfur electrode with a high content of active material. The use of water-soluble binder material NV-1A leads to the realization of high current loads in the Li-S battery. Impedance spectroscopy has shown that the low coulombic efficiency in the cycling of the sulfur electrode is primarily due to the spontaneous dissolution of sulfur in the electrolyte, which requires high energy consumption when charging the Li-S battery. The reduction of the specific capacity during cycling is associated with the formation and accumulation of non-conductive films of short-chain polysulfides. On the basis of the conducted researches and the review of the literature sources ways of overcoming of this problem are offered. The ability of cycling the sulfur electrodes at the high current loads has been shown. The discharge capacity values of the sulfur electrodes at the current load 790 mA·cm⁻² are 500 i 420 mAh·g⁻¹ on the 5-th and 100-th cycles, accordingly. Using the method of impedance spectroscopy, it has been supposed that the formation and accumulation of unconductive Li₂S₂ / Li₂S phases is the main process, which induce the quick capacity reduction of Li - S batteries upon cycling.

Key words: sulfur electrode, discharge capacity, coulombic efficiency, cyclability.

INTRODUCTION. The growing interest in the Li-S system is due to its high energy density (2567 Wh · kg⁻¹), low cost of sulfur and increased safety [1–3]. Li-S batteries are of particular interest for stationary and electric vehicles where high capacity and downsizing are important. However, the efficiency and service life of Li - S batteries need to be improved in order for them to be used in practice [4]. However, the practical application of Li-S battery technology is hindered by several factors:

- sulfur and its discharge product Li₂S are not electrically conductive (5 · 10⁻³⁰ S · cm⁻¹ at 25 °C). This makes it necessary to combine sulfur with various electrically conductive substrates (activated carbon, nanotubes, graphene oxide, leading polymers, metal oxides, etc., in
which the maximum sulfur concentration is reached;

- the density of sulfur differs from the density of the product of its discharge Li$_2$S, and the volumetric expansion or contraction that occurs during the charging-discharging processes reaches (76%);

- dissolution and movement of long-chain lithium sulfides (Li$_2$S$_x$, 2 <x <8) in the electrolyte causes a loss of active sulfur, which leads to a decrease in the capacity and Coulomb efficiency of the battery [5–9].

One of the ways to improve the parameters of a sulfur electrode can be the use of a polymer binder with a large number of polar functional groups, which makes it possible to fix long-chain lithium sulfides and effectively suppress the shuttle effect in Li-S batteries.

When a Li-S battery is discharged, sulfur dissolves in the liquid electrolyte, which leaves numerous voids in the S / C cathode, while at the end of the discharge, dissolved polysulfides precipitate back onto the cathode in the form of Li$_2$S$_2$ and Li$_2$S [10,11].

To ensure high electrochemical characteristics of the cathode during the cycling of the Li / S element, a union capable of maintaining a higher porous structure is needed. Conventional unions such as polyvinylidene fluoride and poly (ethylene oxide) cannot meet this requirement due to swelling and gelation under the action of electrolyte solvents [4]. In addition, the reduction of sulfur as an intermediate produces anionic polysulfide radicals that react with many organic polymers, the so-called vulcanization process [12]. Therefore, the union for the cathode of the Li / S element must be insoluble in the liquid electrolyte and chemically resistant to all types of sulfur.

In our work, we study the electrochemical behavior of a Li-S battery with a new multifunctional water-soluble material NV-1A [13]. Despite a large number of studies [14,15] showing that the best results in the cycling of Li-S batteries are observed at a mass sulfur content of about 30%, from our point of view for effective practical application the content of inactive sulfur electrode components should not exceed 30–40%.

EXPERIMENT AND DISCUSSIONS OF THE RESULTS. The positive electrode of the Li-S battery consisted of sulfur (99.9%, Ukraine), graphite (99.95%, GAK-1, Ukraine), carbon black (Super P, Alfa Aesar China Limited, China) and water-soluble binder NV-1A (Zhejiang Casnovo New Materials Co. Ltd, China) taken in a ratio of 70: 20: 5: 5, respectively.

1M LiN(CF$_3$SO$_2$)$_2$ (Sigma Aldrich) in a solution of 1,2-dimethoxyethane (G1): dioxolane (DOL) (1:1) by volume (Aldrich) was used as the electrolyte. Celgard 2325 acted as a separator. Lithium metal was used as an auxiliary electrode in elements of dimensions of 2016.

Galvanostatic cycling (MTech G410-4, Ukraine) and impedance spectroscopy (Autolab PGSTAT302, Switzerland) were used to obtain electrochemical parameters of the electrode.

Galvanostatic curves of the sulfur electrode (Fig. 1) are characterized by the presence of 2 shelves of discharge / charge processes corresponding to the following reactions:

$$S_8 + 4e^- \rightarrow 2S^{4-}$$ (1-st plateau on the discharge curve)

$$S^{4-} + 8Li^+ + 6e^- \rightarrow 4Li_2S$$

$$S^{4-} + 4Li^+ + 2e^- \rightarrow 2Li_2S_2$$ (2-nd plateau on the discharge curve)
During the cycling of the Li-S battery there is a decrease in discharge / charging capacity, which indicates the degradation of the electrode due to partial loss of active substance due to migration of soluble polysulfides from the cathode material to the electrolyte, followed by their reduction on the carbon surface of the working electrode and lithium counter electrode as a result of the solubility of long-chain lithium polysulfides in DOL and glim solvents, this process can occur spontaneously (the so-called "polyshatl effect").

$$\text{Li}_2\text{S}_n + \text{Li}_2\text{S} \rightarrow \text{Li}_2\text{S}_{n-m} + \text{Li}_2\text{S}_{1+m}$$

$$(n-1)\text{Li}_2\text{S}_n + 2\text{Li} \rightarrow n\text{Li}_2\text{S}_{n-1}$$

This in turn has a negative effect on the preservation of the Li-S battery and requires additional electricity when it is charged, which in turn leads to low coulombic efficiency (Fig. 2), which does not exceed 80% at specified modes of galvanostatic cycling ($i = 790 \mu\text{A} \cdot \text{cm}^2$). The reduction of the current load by 2 and 4 times practically does not change the specific capacity during discharge and is 420 and 450 mAh·g$^{-1}$, respectively.

The main parameters of the cell were calculated by impedance spectroscopy, and it was proved that the greatest contribution to the total resistance of the Li - S battery is made by the resistance corresponding to the charge transfer process through the SEI film on the lithium anode (Fig. 3). Moreover, a sharp increase in this resistance is observed at the end of the discharge of the sulfur electrode, which is associated with the formation of poorly soluble Li$_2$S$_2$ and Li$_2$S films on its surface. At a lower degree of discharge of the electrode, the increase in the resistance to charge transfer at the lithium anode is practically not observed, in contrast to the resistance of the electrolyte in the pores of the separator. This behavior of the Li-S element is due to the solubility of long-chain sulfides S_n^{2-} ($n \geq 4$), the accumulation of which in the electrolyte leads to a change in its specific electrical conductivity. When the degree of discharge of the sulfur electrode is more than 50%, lithium sulfides S_n^{2-} ($n \geq 4$) begin to be converted into Li$_2$S$_2$ and Li$_2$S, which have low solubility, which leads to their crystallization from the electrolyte solution. Therefore, no further increase in electrolyte resistance is observed.
The presence of the above factors leads to the need to optimize the composition of the components of the sulfur electrode in order to create a porous surface that is able to hold lithium polysulfides (in liquid and solid state) in the structure of the electrode. As well as the use of electrolyte systems that inhibit the migration of soluble polysulfides in Li-S batteries.

CONCLUSIONS. Studies have shown the possibility of a long cycle of sulfur electrode with a high content of active material. The use of water-soluble binder material NV-1A leads to the realization of high current loads in the Li-S battery. Impedance spectroscopy has shown that the low coulombic efficiency in the cycling of the sulfur electrode is primarily due to the spontaneous dissolution of sulfur in the electrolyte, which requires high energy consumption when charging the Li-S battery. The reduction of the specific capacity during cycling is associated with the formation and accumulation of non-conductive films of short-chain polysulfides. On the basis of the conducted researches and the review of the literature sources ways of overcoming of this problem are offered.

ACKNOWLEDGEMENT.

The authors are grateful to Zhejiang Casnovo New Materials Co., Ltd. for the provided samples of water-soluble binders.
турних джерел запропоновано шляхи по-
долання цієї проблеми. Показано здатність циклування сірчаних електродів при ви-
sоких струмових навантаженнях. Значен-
ня розрядної ємності сірчаних електродів
при струмовому навантаженні 790 мА-см⁻²
становлять 500 і 420 мАг·г⁻¹ на 5-му і 100-му
циклах відповідно. Використовуючи метод
імпедансної спектроскопії, висунуто при-
pущення, що утворення та накопичення
непровідних фаз Li₂S₂/Li₂S є основним про-
cесом, який спричинює швидке зниження
ємності Li-S акумуляторів при циклуванні.

Ключові слова: сірчаний електрод, роз-
рядна ємність, кулонівська ефективність,
циклічність.

REFERENCES
1. Ji X., Nazar L.F. Advances in Li–S batteries. J.
2. Mikhaylik Y.V., Kovalev I., Schock R., Ku-
maresan K., Xu J., Affinito J. High energy re-
chargeable Li-S cells for EV application: Sta-
tus, Remaining Problems and Solutions. ECS
3. Hagen M., Dörfler S., Fanz P., Berger T.,
Speck R., Tübke J., Althues H., Hoffmann M.J.,
Scherr C., Kaskel S. Development and costs
calculation of lithium–sulfur cells with high
sulfur load and binder free electrodes. J. Power
4. Zhang S.S. Liquid electrolyte lithium/sulfur
battery: Fundamental chemistry, problems,
and solutions. J. Power Sources. 2013. 231 (1):
153–162.
5. Mikhaylik Y.V., Akridge J.R. Polysulfide shut-
tle study in the Li/S battery system. J. Electro-
6. Yuan L., Qiu X., Chen L., Zhu W. New insight
into the discharge process of sulfur cathode
by electrochemical impedance spectroscop-
7. Cui Y., Fu Y. Polysulfide transport through
separators measured by a linear voltage sweep
method. J. Power Sources. 2015. 286 (1) 557–
560.
8. Diao Y., Xie K., Xiong S., Hong X. Analysis
of polysulfide dissolved in electrolyte in dis-
charge-charge process of Li-S battery. J. Elec-
9. Diao Y., Xie K., Xiong S., Hong X. Shuttle phe-
nomenon – The irreversible oxidation mecha-
nism of sulfur active material in Li–S battery.
J. Power Sources 2013. 235 (1) 181–186.
10. Y. Yin, S. Xin, Y. Guo, L. Wan. Lithium–Sul-
fur Batteries: Electrochemistry, Materials, and
(50): 13186–13200.
K.A. In-situ X-ray diffraction studies of lithi-
um–sulfur batteries. J. Power Sources. 2013. 226
12. Zhang S.S. Binder based on polyelectrolyte for
high capacity density lithium/sulfur battery. J.
13. Potapenko O., Potapenko A., Zhou C., Zhang L.,
Xu J., Gu Z. Improved effect of water-soluble
binder NV-1A on the electrochemical pro-
14. Першина К. Д., Сірош В. А., Глоба Н. І.
Спектри електрохімічного імпедансу сис-
теми літій – сірка – біс (трифторметан)
сульфонімід літію: моделювання й аналіз
температурної залежності. Наукові вісті
15. Globa N.I., Sirosch V.A., Shmatok Y.V., Kirillov
S.A. Enhancing of electrochemical characte-
ristics of Li-S system by means of optimiza-
tion of sulfur electrode and electrolyte com-
position. Advanced Batteries, Accumulators
and fuel Cells, 21-st International Conference,